Laser & Optoelectronics Progress, Volume. 62, Issue 16, 1615006(2025)

3D Object Detection Based on Fusion of Voxel Texture Information and Deep Semantic Features

Longfei Wang1, Likang Fan1,2,3、*, Yiqiang Peng1,4,5, Jie Cao1, Liu He1,2,3, Xulei Liu1,2,3, and Xiyuan Gao1
Author Affiliations
  • 1School of Automobile and Transportation, Xihua University, Chengdu 610039, Sichuan , China
  • 2Vehicle Measurement Control and Safety Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, Sichuan , China
  • 3Provincial Engineering Research Center for New Energy Vehicle Intelligent Control and Simulation Test Technology of Sichuan, Chengdu 610039, Sichuan , China
  • 4Yibin Institute in Xihua University, Yibin 644000, Sichuan , China
  • 5Sichuan Intelligent and New Energy Automobile Industry College, Yibin 644000, Sichuan , China
  • show less
    Figures & Tables(12)
    Flow chart of the Voxel-AESC algorithm. (a) 3D voxel processing unit; (b) BEV image feature processing unit
    VFE module schematic diagram
    ISC3D module schematic diagram
    CASA module schematic diagram
    Point cloud views and real scene images of the proposed algorithm on KITTI dataset
    Real vehicle hardware platform. (a) Real vehicle hardware image; (b)(c) schematic diagrams of systems
    Visualization results of the on-campus detection. (a) Camera perspective; (b) point cloud perspective; (c) visualization results
    • Table 1. Comparison of 3D detection accuracy results of different algorithms in KITTI validation set

      View table

      Table 1. Comparison of 3D detection accuracy results of different algorithms in KITTI validation set

      MethodCarPedestrianCyclistAverage
      EasyModerateHardEasyModerateHardEasyModerateHard
      Pointpillars87.5077.0174.7766.7361.0656.5083.6563.4059.7167.16
      PointRCNN89.0178.7778.1062.6955.3651.6084.4865.3759.8366.50
      Point-GNN89.3379.4778.2961.9253.7750.1486.6067.4862.5866.91
      Part-A289.5679.4178.8465.6960.0555.4585.5068.9064.5369.45
      PV-RCNN91.5482.6780.2460.3953.1448.4988.0570.9966.5468.93
      3DSSD88.3679.4074.5564.6444.2740.2382.4864.1056.9062.59
      VoxelNet87.9375.3773.2167.8163.5258.8777.6958.7251.6365.87
      SECOND88.1678.1877.0456.0050.0243.6479.9663.4356.6763.88
      Voxel-AESC88.6279.1976.5457.9255.6245.1981.2966.4258.0767.08
      *+0.46+1.01-0.50+1.92+5.60+1.55+1.33+2.99+1.40+3.20
    • Table 2. Comparison of BEV detection accuracy results of different algorithms in KITTI validation set

      View table

      Table 2. Comparison of BEV detection accuracy results of different algorithms in KITTI validation set

      MethodCarPedestrianCyclistAverage
      EasyModerateHardEasyModerateHardEasyModerateHard
      Pointpillars90.0786.5682.8157.6048.6445.7879.9062.7355.5865.98
      PointRCNN92.1387.3982.7254.7746.1342.8482.5667.2460.2866.92
      Point-GNN93.1189.1783.9055.3647.0744.6185.0467.6261.1467.95
      Part-A291.7087.7984.4781.9168.1261.92
      PV-RCNN94.9890.6586.1482.4968.8962.41
      3DSSD92.6689.0285.8660.5449.9445.7385.0467.6261.1468.86
      VoxelNet89.3579.2677.3946.1340.7438.1166.7054.7650.5558.25
      SECOND91.8186.3781.0455.9945.0240.9376.5056.0549.4562.48
      Voxel-AESC92.5087.9986.9957.6152.2947.7984.7767.8363.1169.37
      *+0.69+1.62+5.95+1.62+7.27+6.86+8.27+11.78+13.66+6.22
    • Table 3. Validation of the effectiveness of ISC3D and CASA modules

      View table

      Table 3. Validation of the effectiveness of ISC3D and CASA modules

      ModuleAverage accuracy
      CarPedestrianCyclist
      None78.1351.1363.33
      ISC3D78.7852.8864.98
      CASA78.3654.4565.13
      ISC3D+CASA79.1955.6266.42
    • Table 4. Hardware list of real vehicle platform

      View table

      Table 4. Hardware list of real vehicle platform

      EquipmentNumberBrandType
      IPC1ADVANTECH610 L
      INS1CHCNAV410
      CDC2FreescaleXEP100
      GPS2CHCNAV410
      MMW radar1ContinentalARS408
      LiDAR1LeishenC32
      Camera2MoloseUC50
    • Table 5. Real vehicle data test results

      View table

      Table 5. Real vehicle data test results

      TypeNumberCorrectWrongOmissiveAccuracy /%
      Pedestrian25136652.00
      Cyclist22135459.09
    Tools

    Get Citation

    Copy Citation Text

    Longfei Wang, Likang Fan, Yiqiang Peng, Jie Cao, Liu He, Xulei Liu, Xiyuan Gao. 3D Object Detection Based on Fusion of Voxel Texture Information and Deep Semantic Features[J]. Laser & Optoelectronics Progress, 2025, 62(16): 1615006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Dec. 31, 2024

    Accepted: Mar. 14, 2025

    Published Online: Aug. 4, 2025

    The Author Email: Likang Fan (BITfanlikang@163.com)

    DOI:10.3788/LOP242537

    CSTR:32186.14.LOP242537

    Topics