Chinese Journal of Lasers, Volume. 49, Issue 1, 0101019(2022)

Modeling In-band Pumped kW Level High-Power Tm-Doped Fiber Lasers via Simulations

Mengmeng Tao1,2、**, Xisheng Ye1、*, Jingfeng Ye2, Ting Yu1, Zhao Quan1, Yunfeng Qi1, Guobin Feng2, and Weibiao Chen1
Author Affiliations
  • 1Shaihai Key Laboratory of All Solid-State Laser and Applied Techniques, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2State Key Laboratory of Laser Interaction with Matter, Northwest Institute of Nuclear Technology, Xi’an, Shaanxi 710024, China
  • show less
    Figures & Tables(12)
    Distribution of the heat load for different laser systems at 1 kW output. (a) 793 nm cladding pump; (b) 1570 nm cladding pump; (c) 1910 nm core pump; (d) 1910 nm pedestal pump
    Algorithm diagram for simulation of TMI threshold and outer cladding damage threshold
    Pump absorption with a constant nominal total absorption. (a) Forward pump distribution; (b) total absorption of pump
    Power limitation of Tm-doped fiber laser at 1570 nm pump
    Power limitation of Tm-doped fiber laser at 1910 nm pump. (a) Core pump; (b) pedestal pump
    • Table 1. Parameters used in the simulation

      View table

      Table 1. Parameters used in the simulation

      ParameterValueParameterValue
      Core radius, r112.5 μmInner cladding radius, r2125 μm
      Pedestal radius, rp22.5 μmOuter cladding radius, r3200 μm
      Heat conductivity of the core and the inner cladding,k1k21.38 W·m-1·K-1Heat conductivity of the outer cladding, k30.2 W·m-1·K-1
      Absorption cross-section@1570 nm, σap15702.0×10-25 m-3[17,28]Emission cross-section@1570 nm,σep15700.096×10-25 m-3[28]
      Absorption cross-section@1910 nm, σap19100.21×10-25 m-3[17,26,28]Emission cross-section@1910 nm, σep19104.97×10-25 m-3[28]
      Absorption cross-section@2010 nm, σap20100.03×10-25 m-3[28]Emission cross-section@2010 nm, σep20102.56×10-25 m-3[7,28]
      Doping concentration of LC TDF, NLC14.5×1025 m-3Doping concentration of HC TDF, NHC28.5×1025 m-3
      Thermo-optic coefficient of silica, k1.2×10-5 K-1Lifetime of 3F4 energy level, τ500 μs [17]
    • Table 2. Optimal gain fiber length and corresponding slope efficiency of different laser systems at 1 kW output

      View table

      Table 2. Optimal gain fiber length and corresponding slope efficiency of different laser systems at 1 kW output

      Pump bandLaser configurationOptimal TDF length /mSlope efficiency /%Quantum efficiency /%
      793 nmCP+HC5.064.0162.2
      CP+LC11.054.4137.9
      1570 nmCP+HC10.076.497.8
      CP+LC17.875.296.3
      1910 nmCoP+HC2.694.399.2
      CoP+LC5.093.998.8
      PP+HC5.693.798.6
      PP+LC10.492.897.7
    • Table 3. Power characteristics of different laser systems at 1 kW output

      View table

      Table 3. Power characteristics of different laser systems at 1 kW output

      Pump bandLaser configurationPump /WAbsorbed pump /WHeat /WRatio /%
      793 nmCP+LC1810180880880.8
      1570 nmCP+LC1335132732732.7
      1910 nmCoP+LC10671066666.6
      PP+LC10811078787.8
    • Table 4. Thermal characteristics of different laser systems at 1 kW output

      View table

      Table 4. Thermal characteristics of different laser systems at 1 kW output

      Pump bandLaser configurationAverage heat load /(W·m-1)Maximum temperature /℃@H1Maximum temperature /℃@H2
      CoreOuter claddingCoreOuter cladding
      793 nmCP+HC104.3407.7323.1220.2135.6
      CP+LC69.3227.6182.0126.580.9
      1570 nmCP+HC30.1141.6114.681.854.7
      CP+LC17.883.268.851.437.0
      1910 nmCoP+HC22.1103.884.962.143.3
      CoP+LC12.563.953.741.331.1
      PP+HC11.161.151.639.930.3
      PP+LC6.841.736.329.824.4
    • Table 5. Parameters used in the estimation of power limit factors

      View table

      Table 5. Parameters used in the estimation of power limit factors

      ParameterValueParameterValue
      Peak gain of SRS,gR*0.5×10-13 m/W [13]Peak gain of SBS,gB1.2×10-11 m/W [36]
      Linewidth of SBS gain,ΔνB10.0 MHz [12]Laser linewidth,Δν1.0 GHz
      Melting temperature of the core,TM1709.9 ℃ [12]Damage temperature of the outer cladding,Tm105.0 ℃ [12]
      Coolant temperature,Tc16.9 ℃ [13]Average heat load of TDFL at TMI threshold,Q¯TDFL136.0 W/m [18]
      Signal gain, G10.0 [13]Optical damage limit,IOD35.0 W/μm2[14]
    • Table 6. Estimation of power limit for different laser systems at optimal gain fiber lengths

      View table

      Table 6. Estimation of power limit for different laser systems at optimal gain fiber lengths

      Pump bandLaser configurationSBS@1 GHz /kWSRS /kWTMI /kWTL /kWOCD /kWOD /kW
      H1H2
      1570 nmCP+HC14.741.74.4165.02.46.312.7
      CP+LC8.323.47.4275.04.110.512.7
      1910 nmCoP+HC56.7160.35.8219.23.28.412.7
      CoP+LC29.583.310.5392.25.815.012.7
      PP+HC26.374.411.3389.06.316.212.7
      PP+LC14.240.118.2626.110.126.112.7
    • Table 7. Maximum output powers for different pump configurations

      View table

      Table 7. Maximum output powers for different pump configurations

      Pump configurationMaximum output powers /kW
      H1H2
      1570 nm CP2.95.9
      1910 nm CoP7.212.6
      1910 nm PP7.412.7
    Tools

    Get Citation

    Copy Citation Text

    Mengmeng Tao, Xisheng Ye, Jingfeng Ye, Ting Yu, Zhao Quan, Yunfeng Qi, Guobin Feng, Weibiao Chen. Modeling In-band Pumped kW Level High-Power Tm-Doped Fiber Lasers via Simulations[J]. Chinese Journal of Lasers, 2022, 49(1): 0101019

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Jul. 15, 2021

    Accepted: Sep. 16, 2021

    Published Online: Dec. 16, 2021

    The Author Email: Mengmeng Tao (taomengmeng@nint.ac.cn), Xisheng Ye (xsye@siom.ac.cn)

    DOI:10.3788/CJL202249.0101019

    Topics