Laser & Optoelectronics Progress, Volume. 58, Issue 4, 0415006(2021)

Dual-Band Scene Classification Based on Convolutional Features and Bayesian Decision

Xiaohua Qiu1,2、*, Min Li1、*, Liqiong Zhang1, and Lin Dong2
Author Affiliations
  • 1College of Operational Support, The Rocket Force University of Engineering, Xi'an, Shaanxi 710025, China
  • 2College of Information Engineering, Engineering University of PAP, Xi'an, Shaanxi 710086, China
  • show less
    Figures & Tables(10)
    Framework diagram of our method
    Example image of the RGB-NIR dataset
    Classification accuracies of the two features. (a) RGB image; (b) NIR image; (c) RGB-NIR image
    Influence of the different threshold value on model classification accuracy. (a) C5 layer; (b) F6 layer; (c) F7 layer
    Classification accuracies of different CNN models. (a) VGG-16 model; (b) VGG-19 model; (c) ResNet-50 model
    Classification accuracy confusion matrix of our method. (a) Best classification accuracy in the 20 groups (98.0%); (b) worst classification accuracy in the 20 groups (88.9%)
    • Table 1. Layers and feature dimension of the VGGNet and ResNet

      View table

      Table 1. Layers and feature dimension of the VGGNet and ResNet

      Hierarchical featureLow levelMiddle levelHigh level
      C2C3C4C5F6(G6)F7
      VGGNet56×56×12828×28×25614×14×5127×7×51240964096
      ResNet-5056×56×25628×28×51214×14×10247×7×20482048--
    • Table 2. Dimensions of different features of the VGG-16 model

      View table

      Table 2. Dimensions of different features of the VGG-16 model

      LayerC2C3C4C5F6F7
      CNN feature4014082007041003522508840964096
      PCA feature of RGB359360361344328312
      PCA feature of NIR361362361350338322
    • Table 3. Classification accuracies of different CNN models at different t unit: %

      View table

      Table 3. Classification accuracies of different CNN models at different t unit: %

      ModelC5F6(G6)F7
      0.900.950.990.900.950.990.900.950.99
      VGG-1690.6±2.590.3±2.490.5±2.491.9±2.392.0±2.591.9±2.192.4±2.793.3±2.092.9±2.5
      VGG-1990.1±2.389.8±2.389.9±2.391.1±2.691.3±2.592.0±2.591.5±3.391.3±3.490.7±3.0
      ResNet-5091.8±1.992.1±2.192.2±2.094.0±2.194.0±2.294.3±2.1------
    • Table 4. Classification accuracy comparison of different methods

      View table

      Table 4. Classification accuracy comparison of different methods

      MethodTrain/testgroupYearClassification accuracy /%
      RGBNIRRGB+NIR
      MSIFT10201162.9±3.1--73.1±3.3
      Fisher Vector10201184.5±2.3--87.9±2.2
      mCENTRIST10201478.9±5.1--84.5±2.1
      DSIFT_CLM12018----86.9
      Dual CNN (GoogLeNet)12017----92.5
      CNN_KPCA_CCA (GoogLeNet)12018----90.8
      MCNN (ResNet-50)12019----93.5
      DC_CNN12019----95.0
      Our method (worst)1(20)202087.980.888.9
      Our method (best)1(20)202096.093.998.0
      Our method (ResNet-50)20202092.3±1.988.7±3.294.3±2.1
    Tools

    Get Citation

    Copy Citation Text

    Xiaohua Qiu, Min Li, Liqiong Zhang, Lin Dong. Dual-Band Scene Classification Based on Convolutional Features and Bayesian Decision[J]. Laser & Optoelectronics Progress, 2021, 58(4): 0415006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Jun. 30, 2020

    Accepted: Aug. 12, 2020

    Published Online: Feb. 22, 2021

    The Author Email: Qiu Xiaohua (qxh_1025@163.com), Li Min (qxh_1025@163.com)

    DOI:10.3788/LOP202158.0415006

    Topics