Infrared and Laser Engineering, Volume. 50, Issue 10, 20200482(2021)

Point cloud semantic segmentation method based on segmented blocks merging

Yunzheng Su1, Qun Hao1, Jie Cao1, Lei Yan1, and Shuai Wu2
Author Affiliations
  • 1Bionic Robot Key Laboratory of Ministry of Education, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
  • show less
    Figures & Tables(12)
    Data 1 semantic segmentation process
    Comparison of semantic segmentation of data 2, data 3, data 4 data 5 and data 6 before and after using the merge strategy
    DBSCAN partial segmentation
    Features distribution
    Comparison of semantic segmentation of data 1, data 2, data 3, data 4, data 5 and data 6 before and after using the merge strategy
    Comparison before and after KNN interpolation optimization
    • Table 1. 6 sets of data size

      View table
      View in Article

      Table 1. 6 sets of data size

      ItemRegion1/mRegion2/mRegion3/m
      X102.14449.87363.899
      Y25.47733.69940.929
      Z29.52818.74234.141
      ItemRegion4/mRegion5/mRegion6/m
      X124.01342.34791.563
      Y25.06822.04232.315
      Z17.06514.11833.042
    • Table 2. Confusion matrix

      View table
      View in Article

      Table 2. Confusion matrix

      ItemGround truth
      PositiveNegative
      PredictionPositiveTPFP
      NegativeFNTN
    • Table 3. Poles accuracy and recall

      View table
      View in Article

      Table 3. Poles accuracy and recall

      MethodRegion1Region2Region3
      AccRecallAccRecallAccRecall
      Original6.9%89.1%5.4%81.0%--
      Proposed49.7%95.2%100%87.1%--
      MethodRegion4Region5Region6
      AccRecallAccRecallAccRecall
      Original5.8%27.8%61.0%100%21.2%80.3%
      Proposed100%27.8%100%100%100%80.3%
    • Table 4. Trees accuracy and recall

      View table
      View in Article

      Table 4. Trees accuracy and recall

      MethodRegion1Region2Region3
      AccRecallAccRecallAccRecall
      Original62.0%12.7%87.9%76.2%100%45.4%
      Proposed99.6%99.9%99.8%100%100%99.7%
      MethodRegion4Region5Region6
      AccRecallAccRecallAccRecall
      Original99.4%96.2%100%98.8%99.7%95.1%
      Proposed99.4%100%100%100%99.7%100%
    • Table 5. Poles accuracy and recall

      View table
      View in Article

      Table 5. Poles accuracy and recall

      MethodRegion1Region2Region3
      AccRecallAccRecallAccRecall
      Original42.9%95.2%20.4%87.1%--
      Proposed49.4%95.2%100%87.1%--
      MethodRegion4Region5Region6
      AccRecallAccRecallAccRecall
      Original24.9%27.8%61%100%33.2%80.3%
      Proposed100%27.8%100%100%100%94.4%
    • Table 6. Trees accuracy and recall

      View table
      View in Article

      Table 6. Trees accuracy and recall

      MethodRegion1Region2Region3
      AccRecallAccRecallAccRecall
      Original99.6%97.7%99.8%95.4%100%99.3%
      Proposed99.6%99.9%99.8%100%100%99.7%
      MethodRegion4Region5Region6
      AccRecallAccRecallAccRecall
      Original99.4%99.3%100%98.8%99.7%96.9%
      Proposed99.4%100%100%100%99.9%100%
    Tools

    Get Citation

    Copy Citation Text

    Yunzheng Su, Qun Hao, Jie Cao, Lei Yan, Shuai Wu. Point cloud semantic segmentation method based on segmented blocks merging[J]. Infrared and Laser Engineering, 2021, 50(10): 20200482

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image processing

    Received: Dec. 15, 2020

    Accepted: --

    Published Online: Dec. 7, 2021

    The Author Email:

    DOI:10.3788/IRLA20200482

    Topics