Journal of the Chinese Ceramic Society, Volume. 53, Issue 4, 1007(2025)

Electrolyte and Interfacial Design for Practical Silicon-Based Anodes

MAO Chong1 and XUE Weijiang2、*
Author Affiliations
  • 1Zhuhai Smoothway Electronic Materials Co., Ltd, Zhuhai 519100, Guangdong, China
  • 2Center for Advancing Materials Performance from the Nanoscale, State Key Laboratory for Mechanical Behavior of Materials, Xi′an Jiaotong University, Xi′an 710049, China
  • show less
    References(24)

    [3] [3] FEYZI E, ANIL KUMAR M R, LI X, et al. A comprehensive review of silicon anodes for high-energy lithium-ion batteries: Challenges, latest developments, and perspectives[J]. Next Energy, 2024, 5: 100176.

    [4] [4] LI Y Z, YAN K, LEE H W, et al. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes[J]. Nat Energy, 2016, 1(2): 15029.

    [5] [5] CUI L F, YANG Y, HSU C M, et al. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries[J]. Nano Lett, 2009, 9(9): 3370–3374.

    [6] [6] KIM H, CHO J. Superior lithium electroactive mesoporous Si@carbon core-shell nanowires for lithium battery anode material[J]. Nano Lett, 2008, 8(11): 3688–3691.

    [7] [7] JIN Y, LI S, KUSHIMA A, et al. Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%[J]. Energy Environ Sci, 2017, 10(2): 580–592.

    [8] [8] LIU N, WU H, MCDOWELL M T, et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes[J]. Nano Lett, 2012, 12(6): 3315–3321.

    [9] [9] SUNG J, KIM N, MA J, et al. Subnano-sized silicon anodeviacrystal growth inhibition mechanism and its application in a prototype battery pack[J]. Nat Energy, 2021, 6: 1164–1175.

    [11] [11] ZHANG Y C, YOU Y, XIN S, et al. Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries[J]. Nano Energy, 2016, 25: 120–127.

    [12] [12] CHEN F Q, HAN J W, KONG D B, et al. 1000 Wh L-1 lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes[J]. Natl Sci Rev, 2021, 8(9): nwab012.

    [13] [13] CHOI S, KWON T W, COSKUN A, et al. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries[J]. Science, 2017, 357(6348): 279–283.

    [14] [14] SUN B Y, JIAO X X, LIU J N, et al. Neural network inspired binder enables fast Li-ion transport and high stress adaptation for Si anode[J]. Nano Lett, 2024, 24(25): 7662–7671.

    [15] [15] WANG X X, WANG K, ZHENG Z F, et al. Advanced inorganic lithium metasilicate binder for high-performance silicon anode[J]. J Colloid Interface Sci, 2023, 652: 971–978.

    [16] [16] PARK S H, KING P J, TIAN R Y, et al. High areal capacity battery electrodes enabled by segregated nanotube networks[J]. Nat Energy, 2019, 4: 560–567.

    [17] [17] ZHENG X Z, FANG G H, PAN Y, et al. Synergistic effect of fluoroethylene carbonate and lithium difluorophosphate on electrochemical performance of SiC-based lithium-ion battery[J]. J Power Sources, 2019, 439: 227081.

    [18] [18] CAO Z, ZHENG X Y, QU Q T, et al. Electrolyte design enabling a high-safety and high-performance Si anode with a tailored electrode-electrolyte interphase[J]. Adv Mater, 2021, 33(38): e2103178.

    [19] [19] KIM N, KIM Y, SUNG J, et al. Issues impeding the commercialization of laboratory innovations for energy-dense Si-containing lithium-ion batteries[J]. Nat Energy, 2023, 8: 921–933.

    [20] [20] SCHIELE A, BREITUNG B, HATSUKADE T, et al. The critical role of fluoroethylene carbonate in the gassing of silicon anodes for lithium-ion batteries[J]. ACS Energy Lett, 2017, 2(10): 2228–2233.

    [21] [21] CHEN S R, ZHENG J M, MEI D H, et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes[J]. Adv Mater, 2018, 30(21): e1706102.

    [22] [22] JIA H P, ZOU L F, GAO P Y, et al. High-performance silicon anodes enabled by nonflammable localized high-concentration electrolytes[J]. Adv Energy Mater, 2019, 9(31): 1900784.

    [23] [23] LIU G P, XIA M, GAO J, et al. Dual-salt localized high-concentration electrolyte for long cycle life silicon-based lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2023, 15(2): 3586–3598.

    [24] [24] CHEN J, FAN X L, LI Q, et al. Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries[J]. Nat Energy, 2020, 5: 386–397.

    [25] [25] LI A M, WANG Z Y, LEE T, et al. Asymmetric electrolyte design for high-energy lithium-ion batteries with micro-sized alloying anodes[J]. Nat Energy, 2024, 9: 1551–1560.

    [26] [26] LI A M, WANG Z Y, POLLARD T P, et al. High voltage electrolytes for lithium-ion batteries with micro-sized silicon anodes[J]. Nat Commun, 2024, 15(1): 1206.

    [27] [27] QUINN J, WU B B, XU Y B, et al. Tracking the oxidation of silicon anodes using cryo-EELS upon battery cycling[J]. ACS Nano, 2022, 16(12): 21063–21070.

    Tools

    Get Citation

    Copy Citation Text

    MAO Chong, XUE Weijiang. Electrolyte and Interfacial Design for Practical Silicon-Based Anodes[J]. Journal of the Chinese Ceramic Society, 2025, 53(4): 1007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 3, 2024

    Accepted: May. 29, 2025

    Published Online: May. 29, 2025

    The Author Email: XUE Weijiang (xuewj@xjtu.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20240761

    Topics