Chinese Journal of Liquid Crystals and Displays, Volume. 38, Issue 11, 1542(2023)

Online class incremental learning for multi-pose point cloud targets

Run-jiang ZHANG1,2, Jie-long GUO2,3, Hui YU2,3, Hai LAN2, Xi-hao WAGN2, and Xian WEI2,3、*
Author Affiliations
  • 1College of Electrical Engineering and Automation,Fuzhou University,Fuzhou 350108,China
  • 2Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350108,China
  • 3Quanzhou Institute of Equipment Manufacturing,Haixi Institutes,Chinese Academy of Sciences,Quanzhou 362000,China
  • show less
    Figures & Tables(10)
    Model structure diagram
    Global maximum pooling layer
    Fixed posture target(a)and multi-posture target(b)
    Accuracy of each task at different times
    Results of MNIST with different postures
    • Table 0. [in Chinese]

      View table
      View in Article

      Table 0. [in Chinese]

      算法2 基于损失变化的记忆重放

      输入:数据流(xD,yD)

        输出:θnew.

        初始化:记忆存储器M,学习率α,模型θold.

        1)FORt=1,,T

        2)通过公式(12)计算L1

      3)通过公式(13)更新临时模型θtempSGD(L1,θold,α)

        4)(xm,ym,Lm)M

        5)通过公式(14)计算L2

      6)根据损失变化选择要回传的损失{L2i}i=1n1sort(Lm-L2)

      7)通过公式(15)更新模型θnewSGD({L2i}i=1n1,θtemp,α)

        8)更新存储器Mupdata(xD,yD,L1,L2)

        9)END.

    • Table 0. [in Chinese]

      View table
      View in Article

      Table 0. [in Chinese]

      算法1 群等变点卷积

      输入:{(ui,fi)}i=1N*m,(uiTgxim为群元素的个数,第一层群等变点卷积中m=1

        输出:{hi}i=1m

        初始化:{gi}i=1m~μ

        1)FOR i=1,,N*m

        2)计算ui的逆元ui-1

        3)找到ui的邻域内点集nbhd(i)

        4)计算ui邻域内点的个数ni=|nbhd(i)|

        5)初始化hi=0

        6)FOR j=1,,N*m

        7)hi+=jnbhdiΨ(ui-1uj)f(uj)

        8)END

        9)hi=1nihi

        10)END

    • Table 1. Experimental environment

      View table
      View in Article

      Table 1. Experimental environment

      实验环境环境配置
      编程语言Python3.8.13
      开发工具Pycharm11.0.11
      深度学习框架Pytorch1.11.0
      CUDA10.2
      GPUGTX TITAN xp
      CPUIntel(R)Xeon(R)Silver 4210 CPU @ 2.20 GHz
    • Table 2. Experimental results on 2D image data

      View table
      View in Article

      Table 2. Experimental results on 2D image data

      固定姿态目标
      方法MNISTCIFAR-10
      AvgACC/%AvgF/%AvgACC/%AvgF/%
      fine-tuning19.8±0.598.9±0.417.2±0.684.3±0.4
      idd online88.6±0.9N/A58.3±1.7N/A
      idd offline99.2±0.2N/A80.8±0.6N/A
      ER82.1±1.515.0±2.133.1±1.735.4±2.0
      ER-MIR87.6±0.77.0±0.946.3±2.534.2±1.5
      Ours88.0±2.84.1±1.842.6±2.319.3±4.6
      多姿态目标
      方法RotMNISTtrCIFAR-10
      AvgACC/%AvgF/%AvgACC/%AvgF/%
      fine-tuning19.7±0.397.9±1.317.4±0.585.6±1.1
      idd online86.7±0.5N/A56.4±2.4N/A
      idd offline98.6±0.1N/A81.9±3.5N/A
      ER23.1±1.039.6±2.315.8±2.634.2±3.5
      ER-MIR30.7±0.630.4±3.422.3±1.331.4±9.6
      Ours86.1±2.14.5±1.440.4±0.920.3±3.4
    • Table 3. Experimental results on 3D data

      View table
      View in Article

      Table 3. Experimental results on 3D data

      方法ModelNet40trModelNet40
      AvgACC/%AvgF/%AvgACC/%AvgF/%
      fine-tuning7.3±0.967.1±2.26.7±0.958.8±2.5
      idd online51.0±1.2N/A47.9±0.8N/A
      idd offline90.9±1.1N/A85.0±1.6N/A
      Ours52.8±3.722.0±2.948.8±3.924.0±2.2
    Tools

    Get Citation

    Copy Citation Text

    Run-jiang ZHANG, Jie-long GUO, Hui YU, Hai LAN, Xi-hao WAGN, Xian WEI. Online class incremental learning for multi-pose point cloud targets[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(11): 1542

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Dec. 21, 2022

    Accepted: --

    Published Online: Nov. 29, 2023

    The Author Email: Xian WEI (xian.wei@fjirsm.ac.cn)

    DOI:10.37188/CJLCD.2022-0419

    Topics