Laser & Optoelectronics Progress, Volume. 60, Issue 2, 0210005(2023)

Lightweight Apple-Leaf Pathological Recognition Based on Multiscale Fusion

Dengzhun Wang1,2, fei Li1,2, Chunyu Yan1,2, Ruixin Liu1,2, Jianwei Yan3, Wenyong Zhang4, and Benliang Xie1,2、*
Author Affiliations
  • 1College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, Guizhou, China
  • 2Semiconductor Power Device Reliability Engineering Research Center of the Ministry of Education, Guiyang 550025, Guizhou, China
  • 3School of Mechanical Engineering, Guizhou University, Guiyang 550025, Guizhou, China
  • 4School of Computer Science and Technology, Guizhou University, Guiyang 550025, Guizhou, China
  • show less
    Figures & Tables(14)
    Total model architecture
    Multiscale feature extraction network
    Feature fusion block
    Comparison between standard convolution and multiscale depth separable convolution. (a) Standard convolution; (b) multiscale depthwise separable convolution
    Comparison between original residual block and improved residual block
    Images of apple leaf disease. (a) Mosaic; (b) brown_spot; (c) rust; (d) grey_spot; (e) alternaria_boltch
    Variation curve of model recognition accuracy and loss value. (a) Validation set accuracy; (b) validation set loss value
    Fusion matrix of test set in dataset
    Confusing leaf images of two apple diseases. (a) Alternaria_boltch; (b) grey_spot
    • Table 1. Dataset distribution

      View table

      Table 1. Dataset distribution

      Diseases category of apple leafTraining setValidation setTest set
      Mosaic2918978978
      Brown_spot337911381138
      Rust349710981098
      Grey_spot2886995995
      Alternaria_boltch321010661066
      Total1582752755275
    • Table 2. Experimental environment configuration

      View table

      Table 2. Experimental environment configuration

      Operating systemUbuntu 18.0
      GPUNVIDIA Tesla V100
      Deep learning frameworkPytorch-GPU-1.7.1
      Programing languagePython 3.8.2
      GPU Acceleration libraryCUDA10.2,CUDNN8.0
    • Table 3. Output dimension number comparison experiment

      View table

      Table 3. Output dimension number comparison experiment

      Diseases category of apple leafRecognition accuracy of the test set in dataset
      ResNet18Map(4)Map(8)Map(16)Map(32)
      Mosaic99.5499.6999.9099.5999.39
      Brown_spot99.3299.1299.2199.8299.91
      Rust94.6395.9997.1296.2295.57
      Grey_spot93.4795.4996.3995.2095.04
      Alternaria_boltch96.3494.9594.9393.8494.82
      Arc96.6697.0497.5196.9396.95
    • Table 4. Test results of different combinations of improvement strategies

      View table

      Table 4. Test results of different combinations of improvement strategies

      Diseases category of apple leafRecognition accuracy of the Validation set in dataset
      Map(8)Mu-ds(3×3,5×5)+Map(8)Mu-ds(3×3,7×7)+Map(8)Mu-ds(5×5,7×7)+Map(8)Mu-ds(3×3,5×5,7×7)+Map(8)
      Mosaic99.9099.6999.8099.8999.29
      Brown_spot99.2199.9199.3899.2199.55
      Rust97.1297.3694.7797.2794.59
      Grey_spot96.3996.0095.8096.6195.79
      Alternaria_boltch94.9393.6096.6397.3597.84
      Arc97.5197.3197.2598.0597.41
    • Table 5. Comparison of recognition results of different algorithms

      View table

      Table 5. Comparison of recognition results of different algorithms

      ModelTest set accuracy /%Parameters /MBFloating Point Operations /GB
      ResNet1896.6611.181.83
      ResNet5096.4523.524.12
      AlexNet95.1314.60.31
      VGG1695.8872.3415.44
      Inception_V497.2141.156.15
      MobileNet_V296.072.230.32
      Propose Model98.054.020.92
    Tools

    Get Citation

    Copy Citation Text

    Dengzhun Wang, fei Li, Chunyu Yan, Ruixin Liu, Jianwei Yan, Wenyong Zhang, Benliang Xie. Lightweight Apple-Leaf Pathological Recognition Based on Multiscale Fusion[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0210005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Aug. 16, 2021

    Accepted: Nov. 15, 2021

    Published Online: Jan. 3, 2023

    The Author Email: Benliang Xie (blxie@gzu.edu.cn)

    DOI:10.3788/LOP212261

    Topics