Chinese Journal of Lasers, Volume. 50, Issue 7, 0701010(2023)
Evolution Characteristics of Multi‑Point Laser‑Induced Plasma in Quiescent Air
[1] Barnes F W, Segal C. Cavity-based flameholding for chemically-reacting supersonic flows[J]. Progress in Aerospace Sciences, 76, 24-41(2015).
[2] Chang J T, Zhang J L, Bao W et al. Research progress on strut-equipped supersonic combustors for scramjet application[J]. Progress in Aerospace Sciences, 103, 1-30(2018).
[3] Kim W, Do H, Mungal M G et al. Plasma-discharge stabilization of jet diffusion flames[J]. IEEE Transactions on Plasma Science, 34, 2545-2551(2006).
[4] Miki K, Schulz J, Menon S. Large-eddy simulation of equilibrium plasma-assisted combustion in supersonic flow[J]. Proceedings of the Combustion Institute, 32, 2413-2420(2009).
[5] Hao D F. Theoretical studies on laser induced plasma ignition mechanism and the threshold detection[D](2006).
[6] Li X H, Yang L C, Peng J B et al. Cavity ignition of liquid kerosene in supersonic flow with a laser-induced plasma[J]. Optics Express, 24, 25362-25369(2016).
[7] Ning Y Q, Chen Y Y, Zhang J et al. Brief review of development and techniques for high power semiconductor lasers[J]. Acta Optica Sinica, 41, 0114001(2021).
[8] Han J L, Zhang J, Shan X N et al. High power heating light source based on semiconductor laser beam combintion technology[J]. Acta Optica Sinica, 41, 2214001(2021).
[9] Yan H, Adelgren R, Boguszko M et al. Laser energy deposition in quiescent air[J]. AIAA Journal, 41, 1988-1995(2003).
[10] Bak M S, Wermer L, Im S. Schlieren imaging investigation of successive laser-induced breakdowns in atmospheric-pressure air[J]. Journal of Physics: D, 48, 485203(2015).
[11] O’Briant S A, Gupta S B, Vasu S S. Review: laser ignition for aerospace propulsion[J]. Propulsion and Power Research, 5, 1-21(2016).
[12] An B, Wang Z G, Yang L C et al. Experimental investigation of the shock loss and temporal evolution of hot plume resulting from dual-pulse laser-induced breakdown in quiescent air[J]. Journal of Applied Physics, 122, 193301(2017).
[13] An B, Wang Z G, Yang L C et al. Experimental investigation on the impacts of ignition energy and position on ignition processes in supersonic flows by laser induced plasma[J]. Acta Astronautica, 137, 444-449(2017).
[14] Han J L, Zhang J, Shan X N et al. High-efficiency ignition laser source based on diode laser beam combination technology[J]. Chinese Journal of Lasers, 49, 0701002(2022).
[15] Macheret S O, Shneider M N, Miles R B. Scramjet inlet control by off-body energy addition: a virtual cowl[J]. AIAA Journal, 42, 2294-2302(2004).
[16] Ogino Y, Ohnishi N, Taguchi S et al. Baroclinic vortex influence on wave drag reduction induced by pulse energy deposition[J]. Physics of Fluids, 21, 066102(2009).
[17] Elias P Q, Severac N, Luyssen J M et al. Improving supersonic flights with femtosecond laser filamentation[J]. Science Advances, 4, eaau5239(2018).
[18] Medoff L D, McIlroy A. Laser-induced spark flameholding in supercritical, subsonic flow[J]. Journal of Propulsion and Power, 13, 721-729(1997).
[19] Yang X C. Study on the effects of laser induced plasma on the methane flame stability[D](2012).
[20] Yu Y, Li X H, Zhao S et al. Repetitive laser-induced plasma ignition and assisted combustion of premixed methane/air flame[J]. Combustion Science and Technology, 189, 1681-1697(2017).
[21] Brieschenk S, O’Byrne S, Kleine H. Laser-induced plasma ignition studies in a model scramjet engine[J]. Combustion and Flame, 160, 145-148(2013).
[22] Brieschenk S, Kleine H, O’Byrne S. Laser ignition of hypersonic air-hydrogen flow[J]. Shock Waves, 23, 439-452(2013).
[23] Phuoc T X. Single-point versus multi-point laser ignition: experimental measurements of combustion times and pressures[J]. Combustion and Flame, 122, 508-510(2000).
[24] Wang L. Principle of plasma high-energy synthetic jet and supersonic flow control[D](2014).
[25] Dors I G. Laser spark ignition modeling[D](2000).
[26] Jones D L. Intermediate strength blast wave[J]. The Physics of Fluids, 11, 1664-1667(1968).
[27] Capitelli M, Colonna G, Gorse C et al. Transport properties of high temperature air in local thermodynamic equilibrium[J]. The European Physical Journal D, 11, 279-289(2000).
[28] An B. Investigation of the mechanism of laser induced plasma ignition in supersonic flows fueled by gaseous hydrocarbon fuel[D](2017).
[29] An B, Wang Z G, Yang L C et al. The ignition characteristics of the close dual-point laser ignition in a cavity based scramjet combustor[J]. Experimental Thermal and Fluid Science, 101, 136-140(2019).
[30] Nakaya S, Iseki S, Gu X J et al. Flame kernel formation behaviors in close dual-point laser breakdown spark ignition for lean methane/air mixtures[J]. Proceedings of the Combustion Institute, 36, 3441-3449(2017).
[31] Horisawa H, Tsuchiya S, Negishi J et al. Ignition and flameholding characteristics of laser igniters in supersonic airstreams[C], 702, 445-455(2004).
[32] Joarder R, Padhi U P, Singh A P et al. Two-dimensional numerical simulations on laser energy depositions in a supersonic flow over a semi-circular body[J]. International Journal of Heat and Mass Transfer, 105, 723-740(2017).
Get Citation
Copy Citation Text
Tong Ye, Leichao Yang, Bin An, Jianfeng Zhang. Evolution Characteristics of Multi‑Point Laser‑Induced Plasma in Quiescent Air[J]. Chinese Journal of Lasers, 2023, 50(7): 0701010
Category: laser devices and laser physics
Received: May. 24, 2022
Accepted: Jul. 27, 2022
Published Online: Apr. 14, 2023
The Author Email: Yang Leichao (leichao.yang@outlook.com)