Chinese Journal of Lasers, Volume. 42, Issue 1, 101001(2015)
Progress in Optical Tweezers Technology
[1] [1] A Ashkin, J Dziedzic, J Bjorkholm, et al.. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Opt Lett, 1986, 11(5): 288-290.
[3] [3] G Roosen, S Slanksy. Influence of the beam divergence on the exerted force on a sphere by a laser beam and required conditions for stable optical levitation[J]. Opt Commun, 1979, 29(3): 341-346.
[4] [4] R Gussgard, T Lindmo, I Brevik. Calculation of the trapping force in a strongly focused laser-beam[J]. J Opt Society Am B, 1992, 9(10): 1922-1930.
[5] [5] J Guck, R Ananthakrishnan, T J Moon, et al.. Optical deformability of soft biological dielectrics[J]. Phys Rev Lett, 2000, 84(23): 5451-5454.
[6] [6] K B Im, D Y Lee, H I Kim, et al.. Calculation of optical trapping forces on microspheres in the ray optics regime[J]. Journal of the Korean Physical Society, 2002, 40(5): 930-933.
[7] [7] M Gu, P C Ke, X S Gan. Trapping force by a high numerical-aperture microscope objective obeying the sine condition[J]. Rev Sci Instrum, 1997, 68(10): 3666-3668.
[8] [8] E Fallman, O Axner. Influence of a glass-water interface on the on-axis trapping of micrometer-sized spherical objects by optical tweezers[J]. Appl Opt, 2003, 42(19): 3915-3926.
[9] [9] S H Xu, Y M Li, L R Lou. Axial optical trapping forces on two particles trapped simultaneously by optical tweezers[J]. Appl Opt, 2005, 44(13): 2667-2672.
[10] [10] X C Yao, Z L Li, H L Guo, et al.. Effect of spherical aberration introduced by water solution on trapping force[J]. Chin Phys, 2000, 9(11): 824-826.
[11] [11] Z Gong, Z Wang, Y M Li, et al.. Axial deviation of an optically trapped particle in trapping force calibration using the drag force method[J]. Opt Commun, 2007, 273(1): 37-42.
[12] [12] J H Zhou, H L Ren, J Cai, et al.. Ray-tracing methodology: application of spatial analytic geometry in the ray-optic model of optical tweezers[J]. Appl Opt, 2008, 47(33): 6307-6314.
[13] [13] J H Zhou, M C Zhong, Z Q Wang, et al.. Calculation of optical forces on an ellipsoid using vectorial ray tracing method[J]. Opt Express, 2012, 20(14): 14928-14937.
[14] [14] G Gouesbet, B Maheu, G Grehan. Light scattering from a sphere arbitrarily located in a Gaussian beam,using a Bromwich formulaton [J]. J Opt Soc Am A, 1988, 5(9): 1427-1443.
[15] [15] A Rohrbach, E H K Stelzer. Optical trapping of dielectric particles in arbitrary fields[J]. J Opt Soc Am A, 2001, 18(4): 839-853.
[16] [16] D B Phillips, M J Padgett, Hanna S, et al.. Shape-induced force fields in optical trapping[J]. Nat Photon, 2014, 8(5): 400-405.
[17] [17] Chen Guanxiong, Zhou Jinhua, Ren Yuxuan, et al.. Manipulating metallic particles using optical tweezers[J]. Laser & Optoelectronics Progress, 2009, 46(6): 32-38.
[18] [18] Y Harada, T Asakura. Radiation forces on a dielectric sphere in the Rayleigh scattering regime[J]. Opt Commun, 1996, 124(5-6): 529-541.
[19] [19] P Zemanek, A JonaS, L Sramek, et al.. Optical trapping of Rayleigh particles using a Gaussian standing wave[J]. Opt Commun, 1998, 151(4-6): 273-285.
[20] [20] C W Qiu, D Palima, A Novitsky, et al.. Engineering light- matter interaction for emerging optical manipulation applications[J]. Nanophotonics, 2014, 3(3): 181-201.
[22] [22] D G Grier. A revolution in optical manipulation[J]. Nature, 2003, 424(6950): 810-816.
[23] [23] M R Dennis, K O′Holleran, M J Padgett. Singular optics: optical vortices and polarization singularities[J]. Prog Opt, 2009, 53: 293-363.
[24] [24] Gao Hongfang, Ren Yuxuan, Liu Weiwei, et al.. Rotation dynamics of yeast cell in vortex optical tweezers[J]. Chinese J Lasers, 2011, 38(4): 0404002.
[25] [25] K Gahagan, G Swartzlander Jr. Optical vortex trapping of particles[J]. Opt Lett, 1996, 21(11): 827-829.
[26] [26] G Molina Terriza, J P Torres, L Torner. Twisted photons[J]. Nature Phys, 2007, 3(5): 305-310.
[27] [27] F Wu, Y Chen, D Guo. Nanosecond pulsed Bessel-Gauss beam generated directly from a Nd:YAG axicon-based resonator[J]. Appl Opt, 2007, 46(22): 4943-4947.
[28] [28] Z Zheng, B F Zhang, H Chen, et al.. Optical trapping with focused Airy beams[J]. Appl Opt, 2011, 50(1): 43-49.
[29] [29] V GarcesChavez, D McGloin, H Melville, et al.. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam[J]. Nature, 2002, 419(6903): 145-147.
[30] [30] C Lez -Mariscal , J C GutiurrezVega, G Milne, et al.. Orbital angular momentum transfer in helical Mathieu beams[J]. Opt Express, 2006, 14(9): 4182-4187.
[31] [31] M A Bandres, J C Gutierrez Vega, S Chavez Cerda. Parabolic nondiffracting optical wave fields[J]. Opt Lett, 2004, 29(1): 44-46.
[32] [32] G Siviloglou, J Broky, A Dogariu, et al.. Observation of accelerating Airy beams[J]. Phys Rev Lett, 2007, 99(21): 213901.
[33] [33] J Baumgartl, M Mazilu, K Dholakia. Optically mediated particle clearing using Airy wavepackets[J]. Nature Photonics, 2008, 2(11): 675-678.
[34] [34] P Zhang, Y Hu, T Li, et al.. Nonparaxial Mathieu and Weber accelerating beams[J]. Phys Rev Lett, 2012, 109(19): 193901.
[35] [35] V R Daria, D Z Palima, J Glückstad. Optical twists in phase and amplitude[J]. Opt Express, 2011, 19(2): 476-481.
[36] [36] Q Zhan. Cylindrical vector beams: from mathematical concepts to applications[J]. Adv Opt Photon, 2009, 1(1): 1-57.
[37] [37] M Donato, S Vasi, R Sayed, et al.. Optical trapping of nanotubes with cylindrical vector beams[J]. Opt Lett, 2012, 37(16): 3381-3383.
[38] [38] Liu Weiwei, Ren Yuxuan, Gao Hongfang, et al.. Aberration in holographic array optical tweezers corrected with Zernike polynomicals[J]. Acta Physica Sinica, 2012, 61(18): 188701.
[39] [39] Sun Qing, Ren Yuxuan, Yao Kun, et al.. Algorithm for diffractive optical element of array optical tweezers[J]. Chinese J Lasers, 2011, 38(1): 0109003.
[40] [40] R Bowman, G Gibson, D Carberry, et al.. iTweezers: Optical micromanipulation controlled by an Apple iPad[J]. J Opt, 2011, 13(4): 044002.
[41] [41] E Theofanidou, L Wilson, W J Hossack, et al.. Spherical aberration correction for optical tweezers[J]. Opt Commun, 2004, 236(1): 145-150.
[42] [42] K D Wulff, D G Cole, R L Clark, et al.. Aberration correction in holographic optical tweezers[J]. Opt Express, 2006, 14(9): 4169-4174.
[44] [44] M C Zhong, J H Zhou, Y X Ren, et al.. Rotation of birefringent particles in optical tweezers with spherical aberration[J]. Appl Opt, 2009, 48(22): 4397-4402.
[45] [45] M C Zhong, L Gong, J H Zhou, et al.. Optical trapping of red blood cells in living animals with a water immersion objective[J]. Opt Lett, 2013, 38(23): 5134-5137.
[46] [46] S M Block, L S Goldstein, B J Schnapp. Bead movement by single kinesin molecules studied with optical tweezers[J]. Nature, 1990, 348(6299): 348.
[47] [47] C Cecconi, E A Shank, C Bustamante, et al.. Direct observation of the three-state folding of a single protein molecule[J]. Science, 2005, 309(5743): 2057-2060.
[48] [48] P R Selvin, Taekjip Ha. Single-Molecule Techniques: A Laboratory Manual[M]. Luo Jianhong Transl.. Beijing: Sciente Press, 2010.
[49] [49] A R Carter, Y Seol, T T Perkins. Precision surface-coupled optical-trapping assay with one-basepair resolution[J]. Biophys J, 2009, 96(7): 2926-2934.
[50] [50] L Nugent Glandorf, T T Perkins. Measuring 0.1 nm motion in 1 ms in an optical microscope with differential back-focal-plane detection[J]. Opt Lett, 2004, 29(22): 2611-2613.
[51] [51] J R Moffitt, Y R Chemla, D Izhaky, et al.. Differential detection of dual traps improves the spatial resolution of optical tweezers[J]. Proc National Academy of Sciences of the United States of America, 2006, 103(24): 9006-9011.
[52] [52] F Gittes, C F Schmidt. Signals and noise in micromechanical measurements[J]. Methods in Cell Biology, 1997, 55: 129-156.
[53] [53] F Czerwinski, A C Richardson, L B Oddershede. Quantifying noise in optical tweezers by Allan variance[J]. Opt Express, 2009, 17(15): 13255-13269.
[54] [54] A Ashkin, J M Dziedzic, T Yamane. Optical trapping and manipulation of single cells using infrared-laser beams[J]. Nature, 1987, 330(6150): 769-771.
[55] [55] H Liang, M W Berns. Astral and spindle forces in PtK2 cells during anaphase B: a laser microbeam study[J]. J Cell Science, 1993, 104(4): 1207-1216.
[56] [56] Wang Haowei, Liu Xiaohui, Li Yinmei, et al.. Optical technic of isolation a single chromosome[J]. Acta Biophysica Sinica, 2004, 20(1): 50-56.
[57] [57] H W Wang, X H Liu, Y M Li, et al.. Isolation of a single rice chromosome by optical micromanipulation[J]. J Opt a-Pure Appl Opt, 2004, 6(1): 89-93.
[58] [58] S Henon, G Lenormand, A Richert, et al.. A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers[J]. Biophy J, 1999, 76(2): 1145-1151.
[59] [59] P B Bareil, Y Sheng, Y Q Chen, et al.. Calculation of spherical red blood cell deformation in a dual-beam optical stretcher[J]. Opt Express, 2007, 15(24): 16029-16034.
[60] [60] M T Wei, A Zaorski, H C Yalcin, et al.. A comparative study of living cell micromechanical properties by oscillatory optical tweezers[J]. Opt Express, 2008, 16(12): 8594-8603.
[61] [61] P Xia, J Zhou, X Song, et al.. Aurora A orchestrates entosis by regulating a dynamic MCAK – TIP150 interaction[J]. J Mol Cell Biology, 2014, 6(3): 240-254.
[63] [63] J. W. Chan. Recent advances in laser tweezers Raman spectroscopy (LTRS) for label-free analysis of single cells[J]. J Biophotonics, 2013, 6(1): 36-48.
[64] [64] G Shen, G Xue, J Cai, et al.. Photo-induced reversible uniform to Janus shape change of vesicles composed of PNIPAM-b-PAzPy2[J]. Soft Matter, 2013, 9(8): 2512-2517.
[65] [65] G Shen, G Xue, J Cai, et al.. In situ observation of azobenzene isomerization along with photo-induced swelling of cross-linked vesicles by laser-trapping Raman spectroscopy[J]. Soft Matter, 2012, 8(35): 9127-9131.
[66] [66] G Xue, K Chen, G Shen, et al.. Phase-separation and photoresponse in binary azobenzene-containing polymer vesicles[J]. Colloid Surface A, 2013, 436(0): 1007-1012.
[67] [67] H Wu, J V Volponi, A E Oliver, et al.. In vivo lipidomics using single-cell Raman spectroscopy[J]. Proc Nat Acad Sci, 2011, 108(9): 3809-3814.
[68] [68] M C Zhong, X B Wei, J H Zhou, et al.. Trapping red blood cells in living animals using optical tweezers[J]. Nature Commun, 2013, 4: 1768.
[69] [69] A Yildiz, M Tomishige, R D Vale, et al.. Kinesin walks hand-over-hand[J]. Science, 2004, 303(5658): 676-678.
[70] [70] K Svoboda, C F Schmidt, B J Schnapp, et al.. Direct observation of kinesin stepping by optical trapping interferometry[J]. Nature, 1993, 365(6448): 721-727.
[71] [71] S M Block, L S Goldstein, B J Schnapp. Bead movement by single kinesin molecules studied with optical tweezers[J]. Nature, 1990, 348: 348-352.
[72] [72] M J Schnitzer, S M Block. Kinesin hydrolyses one ATP per 8-nm step[J]. Nature, 1997, 388(6640): 386-390.
[73] [73] X Zhang, K Halvorsen, C Z Zhang, et al.. Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor[J]. Science, 2009, 324(5932): 1330-1334.
[74] [74] J D Wen, L Lancaster, C Hodges, et al.. Following translation by single ribosomes one codon at a time[J]. Nature, 2008, 452(7187): 598-603.
[76] [76] J C Crocker, D G Grier. When like charges attract: the effects of geometrical confinement on long-range colloidal interactions[J]. Phys Rev Lett, 1996, 77(9): 1897-1990.
[77] [77] J Crocker, J Matteo, A Dinsmore, et al.. Entropic attraction and repulsion in binary colloids probed with a line optical tweezer[J]. Phys Rev Lett, 1999, 82(21): 4352-4355.
[78] [78] Z Sun, S Xu, G Dai, et al.. A microscopic approach to studying colloidal stability[J]. J Chem Phys, 2003, 119(4): 2399-2405.
[79] [79] Xu Shenghua, Li Yinmei, Lou Liren, et al.. Computer simulation of the collision frequency of two particles in optical tweezers[J]. Chin Phys, 2005, 14(2): 382-385.
[80] [80] J P Pantina, E M Furst. Directed assembly and rupture mechanics of colloidal aggregates[J]. Langmuir, 2004, 20(10): 3940-3946.
[81] [81] J P Pantina, E M Furst. Elasticity and critical bending moment of model colloidal aggregates[J]. Phys Rev Lett, 2005, 94(13): 138301.
[82] [82] A Yao, M Tassieri, M Padgett, et al.. Microrheology with optical tweezers[J]. Lab Chip, 2009, 9(17): 2568-2575.
[83] [83] D Preece, R Warren, R Evans, et al.. Optical tweezers: wideband microrheology[J]. J Opt, 2011, 13(4): 044022.
[84] [84] M C Williams. Optical tweezers: measuring piconewton forces[J/OL]. Biophysics Textbook Online, 2002 [2014-12-22]http://www.biophysics. org/btol.
[85] [85] A Ohlinger, A Deak, A A Lutich, et al.. Optically trapped gold nanoparticle enables listening at the microscale[J]. Phys Rev Lett, 2012, 108(1): 018101.
[86] [86] T Li, S Kheifets, D Medellin, et al.. Measurement of the instantaneous velocity of a Brownian particle[J]. Science, 2010, 328(5986): 1673-1675.
[87] [87] S Kheifets, A Simha, K Melin, et al.. Observation of Brownian motion in liquids at short times: instantaneous velocity and memory loss[J]. Science, 2014, 343(6178): 1493-1496.
[88] [88] O M Marago, P H Jones, P G Gucciardi, et al.. Optical trapping and manipulation of nanostructures[J]. Nature Nanotechnol, 2013, 8(11): 807-819.
[89] [89] T Li, S Kheifets, M G Raizen. Millikelvin cooling of an optically trapped microsphere in vacuum[J]. Nature Phys, 2011, 7(7): 527-530.
[90] [90] P N Pusey. Brownian motion goes ballistic[J]. Science, 2011, 332(6031): 802-803.
[91] [91] C Kurtsiefer, S Mayer, P Zarda, et al.. Stable solid-state source of single photons[J]. Phys Rev Lett, 2000, 85(2): 290-293.
[92] [92] R Schirhagl, K Chang, M Loretz, et al.. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology[J]. Annu Rev Phys Chem, 2014, 65: 83-105.
[93] [93] V R Horowitz, B J Aleman, D J Christle, et al.. Electron spin resonance of nitrogen- vacancy centers in optically trapped nanodiamonds[J]. Proc Nat Acad Sci, 2012, 109(34): 13493-13497.
[94] [94] A Albrecht, A Retzker, M B Plenio. Testing quantum gravity by nanodiamond interferometry with nitrogen-vacancy centers[J]. Phys Rev A, 2014, 90(3): 033834.
[97] [97] Y Ren, J Wu, M Zhong, et al.. Monte-Carlo simulation of effective stiffness of time-sharing optical tweezers[J]. Chin Opt Lett, 2010, 8(2): 170-172.
Get Citation
Copy Citation Text
Li Yinmei, Gong Lei, Li Di, Liu Weiwei, Zhong Mincheng, Zhou Jinhua, Wang Ziqiang, Yao Kun. Progress in Optical Tweezers Technology[J]. Chinese Journal of Lasers, 2015, 42(1): 101001
Category: laser devices and laser physics
Received: Oct. 27, 2014
Accepted: --
Published Online: Dec. 29, 2014
The Author Email: Yinmei Li (liyinmei@ustc.edu.cn)