Chinese Journal of Lasers, Volume. 48, Issue 21, 2101006(2021)
Visible Broadband Raman Lasers of H2∶CH4∶CO2 Gas Mixture Pumped by 532-nm Laser
[1] Shi G Y, Wang B, Zhang H et al. The radiative and climatic effects of atmospheric aerosols[J]. Chinese Journal of Atmospheric Sciences, 32, 826-840(2008).
[2] Liu D, Tao Z M, Wu D C et al. Development of three-wavelength-Raman-polarization lidar system and case study[J]. Acta Optica Sinica, 33, 0228001(2013).
[3] Bo G Y, Liu D, Wu D C et al. Two-wavelength lidar for observation of aerosol optical and hygroscopic properties in fogand haze days[J]. Chinese Journal of Lasers, 41, 113001(2014).
[4] Zhao J L, Jiang H Z, Di J L. Recording and reconstruction of a color holographic image by using digital lensless Fourier transform holography[J]. Optics Express, 16, 2514-2519(2008).
[5] Wang Z F, Huang W, Li Z X et al. Progress and prospects of fiber gas laser sources (Ⅰ): based on stimulated Raman scattering[J]. Chinese Journal of Lasers, 48, 0401008(2021).
[6] Huang W, Li Z X, Cui Y L et al. Experimental research on stimulated Raman scattering of deuterium gas in anti-resonance hollow-core fibers[J]. Chinese Journal of Lasers, 47, 0101001(2020).
[7] Zhang P, Tian C L, Qiao Y et al. Four wave mixing effect on simulated Raman scattering in single mode fiber[J]. Laser & Optoelectronics Progress, 55, 061901(2018).
[8] Cao K F, Huang J, Hu S X. Investigation of stimulated Raman scattering characteristics in D2, H2 and D2/H2 mixtures[J]. Acta Optica Sinica, 35, 0319001(2015).
[9] Ye Z H, Lou Q H, Dong J X et al. Multi-wavelength Raman frequency conversion in the mixture of CH4 and H2[J]. Chinese Journal of Lasers, 31, 677-680(2004).
[10] Collier P J, Unni S, Verghese S J et al. Raman lidar measurements of tropospheric ozone[C]. //Proceedings of the 5th Conference on Atmospheric Chemistry: Gases, Aerosols, and Clouds, February 12, 2003, Washington, DC(2003).
[11] Nakazato M, Nagai T, Sakai T et al. Tropospheric ozone differential-absorption lidar using stimulated Raman scattering in carbon dioxide[J]. Applied Optics, 46, 2269-2279(2007).
[12] Sunesson J A, Apituley A, Swart D P. Differential absorption lidar system for routine monitoring of tropospheric ozone[J]. Applied Optics, 33, 7045-7058(1994).
[13] Haner D A. McDermid I S. Stimulated Raman shifting of the Nd∶YAG fourth harmonic (266 nm) in H2, HD, and D2[J]. IEEE Journal of Quantum Electronics, 26, 1292-1298(1990).
[14] Lou Q H, Yuan Y F, Wang Z J. Stimulated Raman scattering with cascade pumping in high pressure H2[J]. Acta Optica Sinica, 5, 1069-1073(1985).
[15] Huang W, Cui Y L, Li Z X et al. Research on 1.7 μm fiber laser source based on stimulated Raman scattering of hydrogen in hollow-core fiber[J]. Acta Optica Sinica, 40, 0514001(2020).
[16] Krupa K, Baudin K, Parriaux A et al. Intense stimulated Raman scattering in CO2-filled hollow-core fibers[J]. Optics Letters, 44, 5318-5321(2019).
[17] Lavorel B, Millot G, Saint-Loup R et al. Study of collisional effects on band shapes of the ν1/2ν2 Fermi dyad in CO2 gas with stimulated Raman spectroscopy. I. rotational and vibrational relaxation in the 2ν2 band[J]. The Journal of Chemical Physics, 93, 2176-2184(1990).
[18] Hanna D C, Yuratich M A, Cotter D. Nonlinear optics of free atoms and molecules[M](1979).
[19] Choi Y S. Asymmetry of the forward and backward Raman gain coefficient at 1.54 μm in methane[J]. Applied Optics, 40, 1925-1930(2001).
[20] Fenner W R, Hyatt H A, Kellam J M et al. Raman cross section of some simple gases[J]. Journal of the Optical Society of America, 63, 73-77(1973).
[21] Fouche D G, Chang R K. Relative Raman cross section for N2, O2, Co, CO2, SO2, and H2S[J]. Applied Physics Letters, 18, 579-580(1971).
[22] Leng J, Sha G, Hua X et al. Study of the competition between forward and backward stimulated Raman scattering in methane[J]. Applied Physics B, 82, 463-468(2006).
[23] Hua X Q, Leng J, Yang H P et al. Effect of thermal defocusing on backward stimulated Raman scattering in CH4[J]. Chinese Journal of Chemical Physics, 19, 193-196(2006).
[24] Chu Z P, Singh U N, Wilkerson T D. Multiple Stokes wavelength generation in H2, D2, and CH4 for lidar aerosol measurements[J]. Applied Optics, 30, 4350-4357(1991).
[25] Bideau-Mehu A, Guern Y, Abjean R et al. Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region[J]. Optics Communications, 9, 432-434(1973).
[26] Li Z H, Liu D, Cai X L et al. Multispectral Raman laser in CO2 gas pumped by 532 nm laser[J]. Chinese Journal of Lasers, 46, 0208003(2019).
[27] Li Z H, Liu D, Cai X L et al. Stimulated Raman scattering in carbon dioxide gas pumped by Nd∶YAG laser at 1064 nm[J]. Chinese Journal of Lasers, 45, 0308001(2018).
[28] Takahashi E, Matsumoto Y, Kuwahara K et al. Short Stokes pulse generation by mixed Raman gas[J]. Optics Communications, 136, 429-432(1997).
[30] Liu D, Cai X L, Li Z H et al. The threshold reduction of SRS in deuterium by multi-pass configuration[J]. Optics Communications, 379, 36-40(2016).
Get Citation
Copy Citation Text
Tiancheng Zheng, Xianglong Cai, Zhonghui Li, Chencheng Shen, Dong Liu, Jingbo Liu, Jingwei Guo. Visible Broadband Raman Lasers of H2∶CH4∶CO2 Gas Mixture Pumped by 532-nm Laser[J]. Chinese Journal of Lasers, 2021, 48(21): 2101006
Category: laser devices and laser physics
Received: Mar. 18, 2021
Accepted: Apr. 20, 2021
Published Online: Oct. 18, 2021
The Author Email: Liu Jingbo (liujinbo@dicp.ac.cn), Guo Jingwei (jingweiguo@dicp.ac.cn)