Journal of Synthetic Crystals, Volume. 49, Issue 8, 1369(2020)
Growth and Performance Optimization of Mid-infrared Fluoride Laser Crystal
[1] [1] Aggarwal I D, Shaw L B, Sanghera J S. Chalcogenide glass fiber-based mid-IR sources and applications[C]//Fiber Lasers IV: Technology, Systems, and Applications. International Society for Optics and Photonics,2007,6453: 645312.
[2] [2] Sanghera J S, Shaw L B, Aggarwal I D. Chalcogenide glass-fiber-based mid-IR sources and applications[J].IEEE Journal of selected topics in quantum electronics,2009,15(1): 114-119.
[3] [3] Zhang J, Cassan E, Zhang X. Enhanced mid-to-near-infrared second harmonic generation in silicon plasmonic microring resonators with low pump power[J].Photonics Research,2014,2(5): 143-149.
[4] [4] Pratisto H, Frenz M, Ith M, et al. Temperature and pressure effects during erbium laser stapedotomy[J].Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery,1996,18(1): 100-108.
[5] [5] Vodopyanov K L. Mid-infrared optical parametric generator with extra-wide (3-19 μm) tunability: applications for spectroscopy of two-dimensional electrons in quantum wells[J].JOSA B,1999,16(9): 1579-1586.
[6] [6] Walsh B M, Lee H R, Barnes N P. Mid infrared lasers for remote sensing applications[J].Journal of Luminescence,2016,169: 400-405.
[7] [7] Deana A M, Wetter N U, Baldochi S L, et al. Pulse-energy-enhanced, strongly modulated Er∶YLF laser for medical applications[C]//AIP Conference Proceedings. American Institute of Physics,2008,992(1): 415-419.
[8] [8] Godard A. Infrared (2-12 μm) solid-state laser sources: a review[J].Comptes Rendus Physique,2007,8(10): 1100-1128.
[9] [9] Hong X, Shen X, Gong M, et al. Broadly tunable mode-hop-free mid-infrared light source with MgO∶PPLN continuous-wave optical parametric oscillator[J].Optics letters,2012,37(23): 4982-4984.
[10] [10] Das R, Kumar S C, Samanta G K, et al. Broadband, high-power, continuous-wave, mid-infrared source using extended phase-matching bandwidth in MgO: PPLN[J].Optics letters,2009,34(24): 3836-3838.
[11] [11] Elder I F, Terry J A C. Efficient conversion into the near-and mid-infrared using a PPLN OPO[J].Journal of Optics A: Pure and Applied Optics,2000,2(3): L19.
[12] [12] Creeden D, Ketteridge P A, Budni P A, et al. Mid-infrared ZnGeP2 parametric oscillator directly pumped by a pulsed 2 μm Tm-doped fiber laser[J].Optics Letters,2008,33(4): 315-317.
[13] [13] Budni P A, Pomeranz L A, Lemons M L, et al. Efficient mid-infrared laser using 1.9 μm pumped Ho: YAG and ZnGeP2 optical parametric oscillators[J].JOSA B,2000,17(5): 723-728.
[14] [14] Fedorov V V, Mirov S B, Gallian A, et al. 3.77-5.05 μm tunable solid state lasers based on Fe2+ doped ZnSe crystals operating at low and room temperatures[J].IEEE J. Quant. Electron,2006,42(9): 907-917.
[16] [16] Sorokina I T, Sorokin E, Di Lieto A, et al. Efficient broadly tunable continuous-wave Cr2+∶ZnSe laser[J].JOSA B,2001,18(7): 926-930.
[17] [17] Ke C, Wang R, Li Z, Hang Y. Room temperature high energy Fe∶ZnSe laser pumped by non-chain pulsed HF laser[J].Proc. of SPIE,2015,9621: 96210D-1.
[18] [18] Chen J, Sun D, Luo J, et al. Performances of a diode end-pumped GYSGG/Er, Pr∶GYSGG composite laser crystal operated at 2.79 μm[J].Optics express,2014,22(20): 23795-23800.
[19] [19] Ma W, Su L, Xu X, et al. Effect of erbium concentration on spectroscopic properties and 2.79 μm laser performance of Er∶CaF2 crystals[J].Optical Materials Express,2016,6(2): 409-415.
[20] [20] Ma W, Qian X, Wang J, et al. Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er: SrF2 single crystals[J].Scientific reports,2016,6: 36635.
[22] [22] Messner M, Heinrich A, Hagen C, et al. High brightness diode pumped Er: YAG laser system at 2.94 μm with nearly 1 kW peak power[C]//SPIE LASE. International Society for Optics and Photonics,2016: 972602-972602-6.
[23] [23] Dinerman B J, Moulton P F. 3 μm cw laser operations in erbium-doped YSGG, GGG, and YAG[J].Optics Letters,1994,19(15): 1143-1145.
[24] [24] Stoneman R C, Esterowitz L. Efficient resonantly pumped 2.8 μm Er3+∶GSGG laser[J].Optics Letters,1992,17: 816-818.
[25] [25] You Z Y, Wang Y, Sun J, et al. CW and Q-switched GGG/Er∶Pr∶GGG/GGG composite crystal laser at 2.7 μm[J].Laser Physics Letters,2017,14: 045810.
[26] [26] Wang J, Cheng T, Wang L, et al. Compensation of strong thermal lensing in an LD side-pumped high-power Er∶YSGG laser[J].Laser Physics Letters,2015,12(10): 105004.
[27] [27] Inochkin M, Khloponin L, Khramov V, et al. High-efficiency diode-pumped Er∶YLF laser with multi-wavelength generation[C]//SPIE LASE. International Society for Optics and Photonics,2012: 823502-823502-12.
[28] [28] Jan S, Michal N, Richard S, et al. Doide-pumped Er∶CaF2 ceramic 2.7 μm tunable laser[J].Optics Letters,2013,38: 3406-3409.
[29] [29] Li C, Jiang S, Xu S, et al. 2.8 μm passively Q-switched Er∶CaF2 diode-pumped laser[J].Optical Materials Express,2016,6: 1570-1575.
[30] [30] Ma W, Su L, Xu X, et al. Improved 2.79 μm continuous-wave laser performance from a diode-end pumped Er,Pr∶CaF2 crystal[J]. Journal of Alloys and Compounds,2017,695: 3370-3375.
[31] [31] Rabinovich W S, Bowman S R, Feldman B J, et al. Tunable Laser Pumped 3 um Ho∶YA103 Laser[J].IEEE J. Quant. Elect. 1991,27: 895-897.
[32] [32] Zavartsev Y D, Zagumennyi A I, Il’Ichev N N, et al. Lasing and Amplification in YSGG∶Cr3+∶Yb3+∶Ho3+ Crystal at Self-Limited Transition 5I6-5I7[J].Laser Physics,2001,11(12): 1245-1248.
[33] [33] Djeu N, Hartwell V E, Kaminskii A A, et al. Room-temperature 3.4 μm Dy∶BaYb2F8 laser[J].Optics Letters,1997,22(13): 997-999.
[34] [34] Nostrand M C, Page R H, Payne S A, et al. Room-temperature laser action at 4.38 m in CaGa2S4∶Dy3+[C]. Lasers and Electro-Optics, 1999. CLEO 99. Summaries of Papers Presented at the Conference on. IEEE, 1999: 390.
[35] [35] elínková H, Doroshenko M E, Jelínek M, et al. Dysprosium-doped PbGa2S4 laser generating at 4.3 μm directly pumped by 1.7 μm laser diode[J].Optics Letters,2013,38(16): 3040-3043.
[36] [36] Hmmerich U, EiEi Nyein, Freeman J A, et al. Crystal growth and optical properties of Dy-doped potassium lead bromide (KPb2Br5)[J]. Journal of Crystal Growth,2006,287(2): 230-233.
[37] [37] Sandrock T, Diening A, Huber G. Laser emission of erbium-doped fluoride bulk glasses in the spectral range from 2.7 to 2.8 μm[J].Optics letters,1999,24(6): 382-384.
[38] [38] Yanagita H, Toratani H, Yamashita T T, et al. Diode-pumped Er3+ glass laser at 2.7 μm[C]//Glasses for Optoelectronics II. International Society for Optics and Photonics,1991,1513: 386-395.
[39] [39] Wetenkamp L, West G F, Tbben H. Optical properties of rare earth-doped ZBLAN glasses[J].Journal of Non-crystalline Solids,1992,140: 35-40.
[40] [40] Berrou A, Kieleck C, Eichhorn M. Mid-infrared lasing from Ho3+ in bulk InF3 glass[J].Optics Letters,2015,40(8): 1699-1701.
[41] [41] Zhang P, Hang Y, Li Z, et al. Sensitization and deactivation effects of Nd3+ on the Ho3+∶3.9 μm emission in a PbF2 crystal[J].Optics Letters,2017,42(13): 2559-2562.
[42] [42] Wang Y, Li Z, Yin H, et al. Enhanced~3 μm mid-infrared emissions of Ho3+ via Yb3+ sensitization and Pr3+ deactivation in Lu3Al5O12 crystal[J].Optical Materials Express,2018,8(7): 1882-1889.
[43] [43] Wang Y, Jiang C, Zhang P, et al. Bandwidth enhancement of ~3 μm emission and energy transfer mechanism in Yb3+/Ho3+/Dy3+ co-doped PbF2 crystal[J].Journal of Luminescence,2019,212: 160-165.
[44] [44] Diening A, Kück S. Spectroscopy and diode-pumped laser oscillation of Yb3+, Ho3+-doped yttrium scandium gallium garnet[J].Journal of Applied Physics,2000,87(9): 4063-4068.
[45] [45] Chen H, Chen F, Wei T, et al. Ho3+ doped fluorophosphate glasses sensitized by Yb3+ for efficient 2 μm laser applications[J].Optics Communications,2014,321: 183-188.
[46] [46] Wang Y, Li J, Zhu Z, et al. Mid-infrared emission in Dy∶YAlO3 crystal[J].Optical Materials Express,2014,4(6): 1104-1111.
[47] [47] Cai X, Wang Y, Li J, et al. Crystal growth and spectroscopic investigations of Dy∶YAlO3 and Dy, Tm∶YAlO3 crystals for ~3 μm laser application[J].Journal of Luminescence,2020: 117328.
[48] [48] Zhang P, Yin J, Zhang B, et al. Intense 2.8 μm emission of Ho3+ doped PbF2 single crystal[J].Optics letters,2014,39(13): 3942-3945.
[49] [49] Zhang P, Zhang B, Hong J, et al. Enhanced emission of 2.86 μm from diode-pumped Ho3+/Yb3+-codoped PbF2 crystal[J].Optics express,2015,23(4): 3920-3927.
[50] [50] Zhang P, Hang Y, Zhang L H. Deactivation effects of the lowest excited state of Ho3+ at 2.9 μm emission introduced by Pr3+ ions in LiLuF4 crystal[J].Optics letters,2012,37(24): 5241-5243.
[51] [51] Li S, Zhang L, He M, et al. Effective enhancement of 2.87 μm fluorescence via Yb3+ in Ho3+∶LaF3 laser crystal[J].Journal of Luminescence,2018,203: 730-734.
[52] [52] Li S, Zhang L, He M, et al. Nd3+ as effective sensitizing and deactivating ions for the 2.87 μm lasers in Ho3+ doped LaF3 crystal[J].Journal of Luminescence,2019,208: 63-66.
[53] [53] Li X, Zhang P, Zhu S, et al. Enhanced 2.75 μm emissions of Er3+ via Eu3+ deactivation in PbF2 crystal[J].Journal of Luminescence,2019,210: 164-168.
[54] [54] Wang Y, Zhang P, Li X, et al. Spectroscopy and energy transfer mechanism of Tb3+ strengthened Er3+ 2.7 μm emission in PbF2 crystal[J].Optical Materials Express,2019,9(1): 13-25.
[55] [55] Li X, Zhang P, Yin H, et al. Sensitization and deactivation effects of Nd3+ on the Er3+: 2.7 μm emission in PbF2 crystal[J].Optical Materials Express,2019,9(4): 1698-1708.
[56] [56] Li S, Zhang L, Zhang P, et al. Nd3+ as effective sensitization and deactivation ions in Nd, Er∶LaF3 crystal for the 2.7 μm lasers[J].Journal of Alloys and Compounds,2020,827: 154268.
[57] [57] Nie H, Zhang P, Zhang B, et al. Diode-end-pumped Ho, Pr∶LiLuF4 bulk laser at 2.95 μm[J].Optics letters,2017,42(4): 699-702.
[58] [58] Fan M, Li T, Li G, et al. Passively Q-switched Ho, Pr∶LiLuF4 laser with graphitic carbon nitride nanosheet film[J].Optics Express,2017,25(11): 12796-12803.
[59] [59] Nie H, Zhang P, Zhang B, et al. Watt-level continuous-wave and black phosphorus passive Q-switching operation of Ho3+, Pr3+∶LiLuF4 bulk laser at 2.95 μm[J].IEEE Journal of Selected Topics in Quantum Electronics,2017,24(5): 1-5.
[60] [60] Yang Y, Nie H, Zhang B, et al. Passively Q-switched mode-locked Ho, Pr∶LiLuF4 laser operating at 2.9 μm with semiconductor saturable absorber mirror[J].Applied Physics Express,2018,11(11): 112704.
[61] [61] Guo L, Li T, Zhang S, et al. Passively Q-switched Ho, Pr∶LiLuF4 bulk laser at 2.95 μm using WS2 saturable absorbers[J].Optical Materials Express,2017,7(6): 2090-2095.
[62] [62] Liu X, Zhang S, Yan Z, et al. WSe2 as a saturable absorber for a passively Q-switched Ho, Pr∶LLF laser at 2.95 μm[J].Optical Materials Express,2018,8(5): 1213-1220.
[63] [63] Fan X, Nie H, Zhao S, et al. MXene saturable absorber for nanosecond pulse generation in a mid-infrared Ho, Pr∶LLF bulk laser[J].Optical Materials Express,2019,9(10): 3977-3984.
[64] [64] Zhang S, Liu X, Guo L, et al. Passively Q-switched Ho, Pr∶LLF bulk slab laser at 2.95 μm based on MoS2 saturable absorber[J].IEEE Photonics Technology Letters,2017,29(24): 2258-2261.
[65] [65] Yan Z, Li G, Li T, et al. Passively Q-switched Ho, Pr∶LiLuF4 laser at 2.95 μm using MoSe2[J].IEEE Photonics Journal,2017,9(5): 1-7.
[66] [66] Zhang P, Xu M, Zhang L, et al. Intense 2.89 μm emission from Dy3+/Yb3+-codoped PbF2 crystal by 970 nm laser diode pumping[J].Optics Express,2015,23(21): 27786-27794.
[67] [67] Li S, Zhang L, Zhang P, et al. Spectroscopic characterizations of Dy∶LaF3 crystal[J].Infrared Physics & Technology,2017,87: 65-71.
Get Citation
Copy Citation Text
ZHANG Peixiong, LI Shanming, YANG Yilun, ZHANG Lianhan, LI Zhen, CHEN Zhenqiang, HANG Yin. Growth and Performance Optimization of Mid-infrared Fluoride Laser Crystal[J]. Journal of Synthetic Crystals, 2020, 49(8): 1369
Category:
Received: --
Accepted: --
Published Online: Nov. 11, 2020
The Author Email: HANG Yin (yhang@siom.ac.cn;陈振强|tzqchen@jnu.edu.cn)
CSTR:32186.14.