Journal of Terahertz Science and Electronic Information Technology , Volume. 23, Issue 3, 189(2025)
Terahertz surface-wave 3D-printed metallic gradient-index lens antennas
[1] [1] DANG Shuping, AMIN O, SHIHADA B, et al. What should 6G be?[J]. Nature Electronics, 2020, 3(1): 20-29. doi: 10.1038/s41928-019-0355-6.
[2] [2] YANG Ping, XIAO Yue, XIAO Ming, et al. 6G wireless communications: vision and potential techniques[J]. IEEE Network, 2019, 33(4): 70-75. doi: 10.1109/MNET.2019.1800418.
[3] [3] GUO Y J, ANSARI M, ZIOLKOWSKI R W, et al. Quasi-optical multi-beam antenna technologies for B5G and 6G mmWave and THz networks: a review[J]. IEEE Open Journal of Antennas and Propagation, 2021(2): 807-830. doi: 10.1109/OJAP.2021.3093622.
[4] [4] LIU Zhipeng, CHEN Fuchang, QIN Chong. A 7×8 butler matrix-fed multibeam antenna based on substrate integrated waveguide technology[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(2): 397-401. doi: 10.1109/LAWP.2022.3213786.
[5] [5] GUO C A, GUO Y J, ZHU H, et al. Optimization of multibeam antennas employing generalized joined coupler matrix[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(1): 215-224. doi: 10.1109/TAP.2022.3220976.
[6] [6] YANG Ye, PAN Yufei, ZHENG Shaoyong, et al. Analytical design method and implementation of broadband 4×4 Nolen matrix[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(1): 343-355. doi: 10.1109/TMTT.2021.312139.
[7] [7] LI J, HE C, FAN H, et al. Gain-equalized multibeam antenna fed by a compact dual-layer Rotman lens at Ka-band[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(3): 2307-2311. doi: 10.1109/TAP.2021.3111199.
[8] [8] XU R, CHEN Z N. A transformation-optics-based flat metamaterial Luneburg lens antenna with zero focal length[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(5): 3287-3296. doi: 10.1109/TAP.2021.3137528.
[9] [9] MIRMOZAFARI M, TURSUNNIYAZ M, LUYEN H, et al. A multibeam tapered cylindrical Luneburg lens[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(8): 5060-5065. doi: 10.1109/TAP.2020.3048508.
[10] [10] QUEVEDO-TERUEL O, MIAO J W, MATTSSON M, et al. Glide-symmetric fully metallic Luneburg lens for 5G communications at Ka-band[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(9): 1588-1592. doi: 10.1109/LAWP.2018.2856371.
[13] [13] PRINCE T J, ELMANSOURI M A, FILIPOVIC D S. Cylindrical Luneburg lens antenna systems for amplitude-only direction-finding applications[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(10): 7924-7932. doi: 10.1109/TAP.2023.3306638.
[14] [14] ZETTERSTROM O, FONSECA N J G, QUEVEDO-TERUEL O. Compact half-Luneburg lens antenna based on a glide-symmetric dielectric structure[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(11): 2283-2287. doi: 10.1109/LAWP.2022.3179639.
[15] [15] LIAO Q, FONSECA N J G, QUEVEDO-TERUEL O. Compact multibeam fully metallic geodesic Luneburg lens antenna based on non-Euclidean transformation optics[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(12): 7383-7388. doi: 10.1109/TAP.2018.2872766.
[16] [16] RICO FERNNDEZ J, VIDARSSON F V, ARREBOLA M, et al. Compact and lightweight additive manufactured parallel-plate waveguide half-Luneburg geodesic lens multiple-beam antenna in the Ka-band[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 22(4): 684-688. doi: 10.1109/LAWP.2022.3222172.
[17] [17] LIAN J W, ANSARI M, HU P, et al. Wideband and high-efficiency parallel-plate Luneburg lens employing all-metal metamaterial for multibeam antenna applications[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(4): 3193-3203. doi: 10.1109/TAP.2023.3242118.
[18] [18] ZETTERSTROM O, CASTILLO-TAPIA P, POYANCO J M, et al. Planar glide-symmetric dielectric half-Luneburg lens at K/Ka-band[C]//2022 16th European Conference on Antennas and Propagation(EuCAP). Madrid, Spain: IEEE, 2022: 1-4. doi: 10.23919/EuCAP53622.2022.9769528.
[19] [19] LU H D, ZHU S Y, SKAIK T, et al. Sub-terahertz metallic multibeam antenna based on a sliding aperture technique[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(1): 290-299. doi: 10.1109/TAP.2023.3323894.
[20] [20] ZHU S, LU H, SKAIK T, et al. A compact terahertz multibeam antenna based on a multimode waveguide beamforming structure[J]. IEEE Transactions on Terahertz Science and Technology, 2023, 14(1): 122-125.
[21] [21] SATO K, MONNAI Y. Two-dimensional terahertz beam steering based on trajectory deflection of leaky-mode[J]. IEEE Transactions on Terahertz Science and Technology, 2021, 11(6): 676-683. doi: 10.1109/TTHZ.2021.3108392.
[22] [22] SATO K, MONNAI Y. Terahertz beam steering based on trajectory deflection in dielectric-free Luneburg lens[J]. IEEE Transactions on Terahertz Science and Technology, 2020, 10(3): 229-236. doi: 10.1109/TTHZ.2020.2983915.
[23] [23] NIE Boyu, LU Hongda, SKAIK T, et al. A 3D-printed subterahertz metallic surface-wave Luneburg lens multibeam antenna[J]. IEEE Transactions on Terahertz Science and Technology, 2023, 13(3): 297-301. doi: 10.1109/TTHZ.2023.3242227.
[24] [24] CHANG Le, LI Yue, ZHANG Zhijun, et al. Low-sidelobe air-filled slot array fabricated using silicon micromachining technology for millimeter-wave application[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(8): 4067-4074. doi: 10.1109/TAP.2017.2717971.
[25] [25] GOMEZ-TORRENT A, GARCI'A-VIGUERAS M, LE COQ L, et al. A low-profile and high-gain frequency beam steering subterahertz antenna enabled by silicon micromachining[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(2): 672-682. doi: 10.1109/TAP.2019.2943328.
[26] [26] LU Hongda, LIU Zhipeng, ZHANG Yanbo, et al. Partial Maxwell fish-eye lens inspired by the Gutman lens and Eaton lens for wide-angle beam scanning[J]. Optics Express, 2021, 29(15): 24194-24209. doi: 10.1364/OE.426539.
[27] [27] LU Hongda, LIU Zhipeng, LIU Yong, et al. Compact air-filled Luneburg lens antennas based on almost-parallel plate waveguide loaded with equal-sized metallic posts[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(11): 6829-6838. doi: 10.1109/TAP.2019.2927862.
[28] [28] PARK Y J, HERSCHLEIN A, WIESBECK W. A photonic bandgap(PBG) structure for guiding and suppressing surface waves in millimeter-wave antennas[J]. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(10): 1854-1859. doi: 10.1109/22.954798.
Get Citation
Copy Citation Text
NIE Boyu, LIU Yong, LU Hongda, ZHU Shaoyuan, LYU Xin. Terahertz surface-wave 3D-printed metallic gradient-index lens antennas[J]. Journal of Terahertz Science and Electronic Information Technology , 2025, 23(3): 189
Category:
Received: Jun. 30, 2024
Accepted: Jun. 5, 2025
Published Online: Jun. 5, 2025
The Author Email: LU Hongda (luhongda@bit.edu.cn)