Journal of the Chinese Ceramic Society, Volume. 53, Issue 4, 862(2025)

Multi-Dimensional Design of Flexible Thermoelectric Devices: Performance Optimization and Application

LIN Junyu, HUANG Yanqi, LV Jingyi, YANG Minwen, SHUAI Jing*, and HOU Yanglong
Author Affiliations
  • School of Materials, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
  • show less
    References(84)

    [1] [1] ZHANG L, SHI X L, YANG Y L, et al. Flexible thermoelectric materials and devices: From materials to applications[J]. Mater Today, 2021, 46: 62–108.

    [2] [2] BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J]. Science, 2008, 321(5895): 1457–1461.

    [3] [3] SHI X L, CHEN W Y, ZHANG T, et al. Fiber-based thermoelectrics for solid, portable, and wearable electronics[J]. Energy Environ Sci, 2021, 14(2): 729–764.

    [4] [4] YAN Q Y, KANATZIDIS M G. High-performance thermoelectrics and challenges for practical devices[J]. Nat Mater, 2022, 21(5): 503–513.

    [5] [5] ZENG C Y, CHEN K, KOZ C, et al. Kirigami-inspired organic and inorganic film-based flexible thermoelectric devices with built-in heat sink[J]. Nano Energy, 2024, 121: 109213.

    [6] [6] SUN S, SHI X L, LIU W D, et al. Cheap, large-scale, and high-performance graphite-based flexible thermoelectric materials and devices with supernormal industry feasibility[J]. ACS Appl Mater Interfaces, 2022, 14(6): 8066–8075.

    [7] [7] LI L, TIAN B, ZHANG Z K, et al. Highly sensitive flexible heat flux sensor based on a microhole array for ultralow to high temperatures[J]. Microsyst Nanoeng, 2023, 9: 133.

    [8] [8] CHEN W Y, SHI X L, ZOU J, et al. Thermoelectric coolers for on-chip thermal management: Materials, design, and optimization[J]. Mater Sci Eng R Rep, 2022, 151: 100700.

    [9] [9] HUXTABLE S T, CAHILL D G, SHENOGIN S, et al. Interfacial heat flow in carbon nanotube suspensions[J]. Nat Mater, 2003, 2(11): 731–734.

    [10] [10] YANG S Q, QIU P F, CHEN L D, et al. Recent developments in flexible thermoelectric devices[J]. Small Sci, 2021, 1(7): 2100005.

    [11] [11] LI H, LIU Y L, LI P C, et al. Enhanced thermoelectric performance of carbon nanotubes/polyaniline composites by multiple interface engineering[J]. ACS Appl Mater Interfaces, 2021, 13(5): 6650–6658.

    [12] [12] GHOSH A, VISHWAKARMA C K, BISHT P, et al. Understanding the role of oxygen-passivated grain boundary in modulating the thermoelectric properties of Sb2Te3 thin film[J]. ACS Appl Energy Mater, 2024, 7(12): 5107–5119.

    [13] [13] DU Y, XU J Y, PAUL B, et al. Flexible thermoelectric materials and devices[J]. Appl Mater Today, 2018, 12: 366–388.

    [14] [14] CHEN W Y, SHI X L, LI M, et al. Nanobinders advance screen-printed flexible thermoelectrics[J]. Science, 2024, 386(6727): 1265–1271.

    [15] [15] SHI X L, ZOU J, CHEN Z G. Advanced thermoelectric design: From materials and structures to devices[J]. Chem Rev, 2020, 120(15): 7399–7515.

    [16] [16] HONG S, GU Y, SEO J K, et al. Wearable thermoelectrics for personalized thermoregulation[J]. Sci Adv, 2019, 5(5): eaaw0536.

    [17] [17] LIU Y J, HOU S H, WANG X D, et al. Passive radiative cooling enables improved performance in wearable thermoelectric generators[J]. Small, 2022, 18(10): e2106875.

    [18] [18] YANG Y, HU H J, CHEN Z Y, et al. Stretchable nanolayered thermoelectric energy harvester on complex and dynamic surfaces[J]. Nano Lett, 2020, 20(6): 4445–4453.

    [19] [19] LEE B, CHO H, PARK K T, et al. High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics[J]. Nat Commun, 2020, 11(1): 5948.

    [20] [20] KIM C S, LEE G S, CHOI H, et al. Structural design of a flexible thermoelectric power generator for wearable applications[J]. Appl Energy, 2018, 214: 131–138.

    [21] [21] YUAN J F, ZHU R. A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator[J]. Appl Energy, 2020, 271: 115250.

    [22] [22] YANG S, LI Y M, DENG L, et al. Flexible thermoelectric generator and energy management electronics powered by body heat[J]. Microsyst Nanoeng, 2023, 9: 106.

    [23] [23] FAN W S, AN Z J, LIU F, et al. High-performance stretchable thermoelectric generator for self-powered wearable electronics[J]. Adv Sci, 2023, 10(12): e2206397.

    [24] [24] LEE M H, KANG Y H, KIM J, et al. Freely shapable and 3D porous carbon nanotube foam using rapid solvent evaporation method for flexible thermoelectric power generators[J]. Adv Energy Mater, 2019, 9(29): 1900914.

    [25] [25] WANG Y C, SHI Y G, MEI D Q, et al. Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer[J]. Appl Energy, 2018, 215: 690–698.

    [26] [26] WANG Y, YANG L, SHI X L, et al. Flexible thermoelectric materials and generators: Challenges and innovations[J]. Adv Mater, 2019, 31(29): e1807916.

    [27] [27] MIAO L, ZHU S J, LIU C Y, et al. Comfortable wearable thermoelectric generator with high output power[J]. Nat Commun, 2024, 15(1): 8516.

    [28] [28] EOM Y, WIJETHUNGE D, PARK H, et al. Flexible thermoelectric power generation system based on rigid inorganic bulk materials[J]. Appl Energy, 2017, 206: 649–656.

    [29] [29] ZHOU Y, GUO Z T, HE J Q. Redesign high-performance flexible thermoelectrics: From mathematical algorithm to artificial cracks[J]. 2020, 116(4): 043904.

    [30] [30] JIN J F, HOU Y, LI C, et al. High-performance waterproof flexible thermoelectric generators for self-powered electronics[J]. Nano Energy, 2024, 132: 110388.

    [31] [31] ZHANG Q H, DENG K F, WILKENS L, et al. Micro-thermoelectric devices[J]. Nat Electron, 2022, 5(6): 333–347.

    [32] [32] GLATZ W, SCHWYTER E, DURRER L, et al. Bi2Te3-based flexible micro thermoelectric generator with optimized design[J]. J Microelectromech Syst, 2009, 18(3): 763–772.

    [33] [33] KEE S, HAQUE M A, CORZO D, et al. Self-healing and stretchable 3D-printed organic thermoelectrics[J]. Adv Funct Mater, 2019, 29(51): 1905426.

    [34] [34] ZANG J Q, CHEN J Y, CHEN Z W, et al. Printed flexible thermoelectric materials and devices[J]. J Mater Chem A, 2021, 9(35): 19439–19464.

    [35] [35] RUSS B, GLAUDELL A, URBAN J J, et al. Organic thermoelectric materials for energy harvesting and temperature control[J]. Nat Rev Mater, 2016, 1(10): 16050.

    [36] [36] ZHANG J, ZHANG W H, WEI H X, et al. Flexible micro thermoelectric generators with high power density and light weight[J]. Nano Energy, 2023, 105: 108023.

    [37] [37] PARK J W, KIM C S, CHOI H, et al. A flexible micro-thermoelectric generator sticker with trapezoidal-shaped legs for large temperature gradient and high-power density[J]. Adv Mater Technol, 2020, 5(10): 2000486.

    [38] [38] NGUYEN HUU T, VAN T N, TAKAHITO O. Flexible thermoelectric power generator with Y-type structure using electrochemical deposition process[J]. Appl Energy, 2018, 210: 467–476.

    [39] [39] LEI Y, QI R J, CHEN M Y, et al. Microstructurally tailored thin -Ag2Se films toward commercial flexible thermoelectrics[J]. Adv Mater, 2022, 34(7): e2104786.

    [40] [40] OH J Y, LEE J H, HAN S W, et al. Chemically exfoliated transition metal dichalcogenide nanosheet-based wearable thermoelectric generators[J]. Energy Environ Sci, 2016, 9(5): 1696–1705.

    [41] [41] KIM N, LIENEMANN S, PETSAGKOURAKIS I, et al. Elastic conducting polymer composites in thermoelectric modules[J]. Nat Commun, 2020, 11(1): 1424.

    [42] [42] HWANG S, JANG D, LEE B, et al. All direct ink writing of 3D compliant carbon thermoelectric generators for high-energy conversion efficiency[J]. Adv Energy Mater, 2023, 13(23): 2204171.

    [43] [43] DING Y F, QIU Y, CAI K F, et al. High performance n-type Ag2Se film on nylon membrane for flexible thermoelectric power generator[J]. Nat Commun, 2019, 10(1): 841.

    [44] [44] HONG S H, LEE T C, LIU C L. All-solution-processed polythiophene/carbon nanotube nanocomposites integrated on biocompatible silk fibroin substrates for wearable thermoelectric generators[J]. ACS Appl Energy Mater, 2023, 6(4): 2602–2610.

    [45] [45] HU H, WANG Y, FU C, et al. Achieving metal-like malleability and ductility in Ag2Te1–xSxinorganic thermoelectric semiconductors with high mobility[J]. The Innovation, 2022, 3(6): 100341

    [46] [46] NAN K W, KANG S D, LI K, et al. Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices[J]. Sci Adv, 2018, 4(11): eaau5849.

    [47] [47] LIANG J S, WANG T, QIU P F, et al. Flexible thermoelectrics: From silver chalcogenides to full-inorganic devices[J]. Energy Environ Sci, 2019, 12(10): 2983–2990.

    [48] [48] HINTERLEITNER B, KNAPP I, PONEDER M, et al. Thermoelectric performance of a metastable thin-film Heusler alloy[J]. Nature, 2019, 576(7785): 85–90.

    [49] [49] VENKATASUBRAMANIAN R, SIIVOLA E, COLPITTS T, et al. Thin-film thermoelectric devices with high room-temperature figures of merit[J]. Nature, 2001, 413: 597–602.

    [50] [50] JIN Q, JIANG S, ZHAO Y, et al. Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold[J]. Nat Mater, 2019, 18(1): 62–68.

    [51] [51] YANG Q Y, YANG S Q, QIU P F, et al. Flexible thermoelectrics based on ductile semiconductors[J]. Science, 2022, 377(6608): 854–858.

    [52] [52] ZHAO P, XUE W H, ZHANG Y, et al. Plasticity in single-crystalline Mg3Bi2 thermoelectric material[J]. Nature, 2024, 631(8022): 777–782.

    [53] [53] DENG T T, GAO Z Q, LI Z, et al. Room-temperature exceptional plasticity in defective Bi2Te3-based bulk thermoelectric crystals[J]. Science, 2024, 386(6726): 1112–1117.

    [54] [54] KARTHIKEYAN V, SURJADI J U, WONG J C K, et al. Wearable and flexible thin film thermoelectric module for multi-scale energy harvesting[J]. J Power Sources, 2020, 455: 227983.

    [55] [55] ZOU Q, SHANG H J, HUANG D X, et al. Bi2Te3-based flexible thermoelectric generator for wearable electronics[J]. 2022, 120(2): 023903.

    [56] [56] HOU S H, LIU Y J, YIN L, et al. High performance wearable thermoelectric generators using Ag2Se films with large carrier mobility[J]. Nano Energy, 2021, 87: 106223.

    [57] [57] HOU S H, LIU Y J, LUO Y, et al. High-performance, thin-film thermoelectric generator with self-healing ability for body-heat harvesting[J]. Cell Rep Phys Sci, 2022, 3(11): 101146.

    [58] [58] LIU Y, LU Y M, WANG Z X, et al. High performance Ag2Se films by a one-pot method for a flexible thermoelectric generator[J]. J Mater Chem A, 2022, 10(48): 25644–25651.

    [59] [59] WEI M, SHI X L, ZHENG Z H, et al. Directional thermal diffusion realizing inorganic Sb2Te3/Te hybrid thin films with high thermoelectric performance and flexibility[J]. Adv Funct Mater, 2022, 32(45): 2207903.

    [60] [60] AO D W, LIU W D, CHEN Y X, et al. Novel thermal diffusion temperature engineering leading to high thermoelectric performance in Bi2 Te3-based flexible thin-films[J]. Adv Sci, 2022, 9(5): e2103547.

    [61] [61] YUAN X J, QIU P F, SUN C Y, et al. Extraordinary self-powered Y-shaped flexible film thermoelectric device for wearables[J]. Energy Environ Sci, 2024, 17(14): 4968–4976.

    [62] [62] LU Y, ZHOU Y, WANG W, et al. Staggered-layer-boosted flexible Bi2Te3 films with high thermoelectric performance[J]. Nat Nanotechnol, 2023, 18(11): 1281–1288.

    [63] [63] ZHOU Q, ZHU K, LI J, et al. Leaf-inspired flexible thermoelectric generators with high temperature difference utilization ratio and output power in ambient air[J]. Adv Sci, 2021, 8(12): 2004947.

    [64] [64] GUO Z P, YU Y D, ZHU W, et al. Kirigami-based stretchable, deformable, ultralight thin-film thermoelectric generator for BodyNET application[J]. Adv Energy Mater, 2022, 12(5): 2102993.

    [65] [65] CHEN C, WANG R, LI X L, et al. Structural design of nanowire wearable stretchable thermoelectric generator[J]. Nano Lett, 2022, 22(10): 4131–4136.

    [66] [66] HANSEN T S, WEST K, HASSAGER O, et al. Highly stretchable and conductive polymer material made from poly(3, 4-ethylenedioxythiophene) and polyurethane elastomers[J]. Adv Funct Mater, 2007, 17(16): 3069–3073.

    [67] [67] KANG Y H, BAE E J, LEE M H, et al. Highly flexible and durable thermoelectric power generator using CNT/PDMS foam by rapid solvent evaporation[J]. Small, 2022, 18(5): e2106108.

    [68] [68] WANG X D, LIANG L R, LV H C, et al. Elastic aerogel thermoelectric generator with vertical temperature-difference architecture and compression-induced power enhancement[J]. Nano Energy, 2021, 90: 106577.

    [69] [69] WANG L M, BI H, YAO Q, et al. Three-dimensional tubular graphene/ polyaniline composites as high-performance elastic thermoelectrics[J]. Compos Sci Technol, 2017, 150: 135–140.

    [70] [70] KHAN Z U, EDBERG J, HAMEDI M M, et al. Thermoelectric polymers and their elastic aerogels[J]. Adv Mater, 2016, 28(22): 4556–4562.

    [71] [71] LIU Y J, WANG X D, HOU S H, et al. Scalable-produced 3D elastic thermoelectric network for body heat harvesting[J]. Nat Commun, 2023, 14(1): 3058.

    [72] [72] YAMAMOTO N, TAKAI H. Electrical power generation from a knitted wire panel using the thermoelectric effect[J]. Electr Eng Jpn, 2002, 140(1): 16–21.

    [73] [73] KIM M K, KIM M S, LEE S, et al. Wearable thermoelectric generator for harvesting human body heat energy[J]. Smart Mater Struct, 2014, 23(10): 105002.

    [74] [74] KIM S J, WE J H, CHO B J. A wearable thermoelectric generator fabricated on a glass fabric[J]. Energy Environ Sci, 2014, 7(6): 1959–1965.

    [75] [75] LU Z S, ZHANG H H, MAO C P, et al. Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body[J]. Appl Energy, 2016, 164: 57–63.

    [76] [76] RYAN J D, MENGISTIE D A, GABRIELSSON R, et al. Machine- washable PEDOT: PSS dyed silk yarns for electronic textiles[J]. ACS Appl Mater Interfaces, 2017, 9(10): 9045–9050.

    [77] [77] DU Y, CAI K F, CHEN S, et al. Thermoelectric fabrics: Toward power generating clothing[J]. Sci Rep, 2015, 5: 6411.

    [78] [78] JIA Y H, SHEN L L, LIU J, et al. An efficient PEDOT-coated textile for wearable thermoelectric generators and strain sensors[J]. J Mater Chem C, 2019, 7(12): 3496–3502.

    [79] [79] ALLISON L K, ANDREW T L. A wearable all-fabric thermoelectric generator[J]. Adv Mater Technol, 2019, 4(5): 1800615.

    [80] [80] ELMOUGHNI H M, MENON A K, WOLFE R M W, et al. A textile-integrated polymer thermoelectric generator for body heat harvesting[J]. Adv Mater Technol, 2019, 4(7): 1800708.

    [81] [81] LEE J A, ALIEV A E, BYKOVA J S, et al. Woven-yarn thermoelectric textiles[J]. Adv Mater, 2016, 28(25): 5038–5044.

    [82] [82] WU Q, HU J L. A novel design for a wearable thermoelectric generator based on 3D fabric structure[J]. Smart Mater Struct, 2017, 26(4): 045037.

    [83] [83] ITO M, KOIZUMI T, KOJIMA H, et al. From materials to device design of a thermoelectric fabric for wearable energy harvesters[J]. J Mater Chem A, 2017, 5(24): 12068–12072.

    [84] [84] SUN T T, ZHOU B Y, ZHENG Q, et al. Stretchable fabric generates electric power from woven thermoelectric fibers[J]. Nat Commun, 2020, 11(1): 572.

    Tools

    Get Citation

    Copy Citation Text

    LIN Junyu, HUANG Yanqi, LV Jingyi, YANG Minwen, SHUAI Jing, HOU Yanglong. Multi-Dimensional Design of Flexible Thermoelectric Devices: Performance Optimization and Application[J]. Journal of the Chinese Ceramic Society, 2025, 53(4): 862

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Nov. 14, 2024

    Accepted: May. 29, 2025

    Published Online: May. 29, 2025

    The Author Email: SHUAI Jing (shuaij3@mail.sysu.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20240721

    Topics