Chinese Journal of Liquid Crystals and Displays, Volume. 38, Issue 3, 356(2023)

No-reference image quality assessment based on feature tokenizer and Transformer

Wei SONG1、*, Jia-jin LI1, Xiao-chen LIU1, Zhi-xiang LIU1, and Shao-hua SHI2
Author Affiliations
  • 1College of Information,Shanghai Ocean University,Shanghai 201306,China
  • 2East China Sea Survey Center,State Oceanic Administration,Shanghai 200137,China
  • show less
    Figures & Tables(13)
    Architecture of VTT-IQA
    Tokenizer.(a)Filter-based tokenizer;(b)Recurrent tokenizer.
    Visualization of feature map.(a)Reference image;(b)Distorted image.(a1),(a2),(a3),(a4)and(b1),(b2),(b3),(b4)are feature maps extracted by the semantic feature extraction network for(a)and(b),respectively.
    Impact of the number of patches on performance.(a)PLCC;(b)SROCC.
    Number of parameters vs. performance on TID2013.(a)PLCC;(b)SROCC.
    • Table 1. Architecture of the semantic feature extraction module

      View table
      View in Article

      Table 1. Architecture of the semantic feature extraction module

      LayerBlock typeKernel sizeChannelStrideNum of blocks
      SE-1Conv+BN+ReLU3×3161×1
      SE-2Conv+BN+ReLU3×3161×6
      SE-3Conv+BN+ReLU3×3322×1
      Conv+BN+ReLU3×3321×5
      SE-4Conv+BN+ReLU3×3642×1
      Conv+BN+ReLU3×3641×5
    • Table 2. Architecture of the low level feature extraction network

      View table
      View in Article

      Table 2. Architecture of the low level feature extraction network

      Layer typeKernel sizeChannelsStridePadding
      conv7×73161×13
      conv5×5[16,6]1×12
      conv3×3[16,2]1×11
      conv3×3[32,32]1×11
      conv3×3[32,32]1×11
    • Table 3. Performance comparison on benchmark IQA datasets

      View table
      View in Article

      Table 3. Performance comparison on benchmark IQA datasets

      NR-IQA methodsLIVECSIQTID2013LIVE-MDLIVE-CH
      PLCCSROCCPLCCSROCCPLCCSROCCPLCCSROCCPLCCSROCC
      TraditionalBLIINDS-Ⅱ0.9200.9190.5340.5700.6280.5360.8450.8270.4500.405
      DIIVINE0.9230.9250.8360.7840.5490.6450.8940.8740.5680.607
      BRISQUE0.9420.9390.8290.8500.6510.5730.9210.8970.5850.607
      NIQE0.9190.9150.7180.6300.4150.2990.8150.7450.4800.430
      CORINA0.9430.9420.7810.7140.6130.5490.9150.9000.6620.618
      FRIQUEE0.9620.9480.8630.8390.7040.6690.9400.9250.7200.720
      CNN-basedWaDiQaM0.9360.9540.7870.7610.6710.680
      Rank0.9820.9810.7990.780
      DIQA0.9770.9750.9150.8840.8500.8250.9420.9390.7040.703
      BIECON0.9600.9580.8230.8150.7620.7170.9330.9090.6130.595
      BPSQM0.9630.9730.9150.8740.8850.862
      CaHDC0.9640.9650.9140.9030.8780.8620.9500.9270.7440.738
      AIGQA0.9570.9600.9520.9270.8930.8710.9470.9330.7610.751
      ENOSS0.9610.9660.9590.9540.8910.8740.9140.885
      Transformer basedTRIQ0.4820.4690.5680.5010.5750.4660.8420.8180.9100.902
      VTT-IQA0.9640.9680.9620.9540.9080.8870.9540.9580.7270.704
    • Table 4. Results on individual distortion types

      View table
      View in Article

      Table 4. Results on individual distortion types

      TypeJP2KJPEGWNGBFFR
      PLCC0.9700.9660.9880.9700.938
      SROCC0.9710.9590.9890.9650.923
    • Table 5. Results on underwater IQA dataset

      View table
      View in Article

      Table 5. Results on underwater IQA dataset

      ModelSROCCKROCC
      BRISQUE0.7160.588
      DIIVINE0.6110.481
      FRIQUEE0.6260.490
      UCIQE0.5180.386
      UIQM0.4080.309
      VTT-IQA0.8450.655
    • Table 6. Results of ablation experiments

      View table
      View in Article

      Table 6. Results of ablation experiments

      ModelPLCCSROCC
      VTT-IQA w/o LENet0.9510.938
      VTT-IQA w/o STNet0.8870.871
      VTT-IQA0.9620.954
    • Table 7. Performance comparison of different tokenizer strategies

      View table
      View in Article

      Table 7. Performance comparison of different tokenizer strategies

      Tokenizer strategyPLCCSROCC
      Filter-based tokenizer0.9440.941
      Recurrent tokenizer0.9640.968
    • Table 8. Impact of the number of feature tokens on model performance

      View table
      View in Article

      Table 8. Impact of the number of feature tokens on model performance

      Number of vision tokensPLCCSROCC
      80.9440.940
      160.9640.968
      240.9620.962
    Tools

    Get Citation

    Copy Citation Text

    Wei SONG, Jia-jin LI, Xiao-chen LIU, Zhi-xiang LIU, Shao-hua SHI. No-reference image quality assessment based on feature tokenizer and Transformer[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(3): 356

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jun. 29, 2022

    Accepted: --

    Published Online: Apr. 3, 2023

    The Author Email: Wei SONG (wsong@shou.edu.cn)

    DOI:10.37188/CJLCD.2022-0220

    Topics