Laser Technology, Volume. 48, Issue 6, 846(2024)

Research progress on 2-D material based on hetero-dimension photodetectors

WANG Xule1, CHENG Beitong1, JIANG Ruomei1, ZHOU Yong1,2, XIE Xiumin1, ZHAO Chaojun1, ZHANG Wei1, and SONG Haizhi1,3,4、*
Author Affiliations
  • 1Quantum Research Center, Southwest Institute of Technical Physics, Chengdu 610041, China
  • 2School of Electronic Engineering, Chengdu Technological University, Chengdu 611730, China
  • 3Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 4State Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun 130013, China
  • show less
    References(87)

    [1] [1] KAHN J M, BARRY R. Wireless infrared communications[J]. Proceedings of the IEEE, 1997, 85(2): 265-298.

    [2] [2] KLLHAMMER J. Imaging: The road ahead for car night-vision[J]. Nature Photonics, 2006, 5(10): 12-13.

    [3] [3] HAN J, WANG J. Photodetectors based on two-dimensional materials and organic thin-film heterojunctions[J]. Chinese Physics, 2019, B28(1): 17103.

    [6] [6] CASALINO M, COPPOLA G, IODICE M, et al. Near-infrared sub-bandgap all-Silicon photodetectors: State of the art and perspectives[J]. Sensors, 2010, 10(12): 10571-10600.

    [7] [7] POP E. Energy dissipation and transport in nanoscale devices[J]. Nano Research, 2010, 3(3): 147-169.

    [8] [8] JIN X, LIU X, LEE J, et al. Modeling of subthreshold characteristics of short channel junctionless cylindrical surrounding-gate nanowire metal-oxide-silicon field effect transistors[J]. Physica Scripta, 2014, 89(1): 15804.

    [9] [9] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

    [10] [10] LIU C, CHEN H, WANG S, et al. Two-dimensional materials for next-generation computing technologies[J]. Nature Nanotechnology, 2020, 15(7): 545-557.

    [11] [11] HUO N, KONSTANTATOS G. Recent progress and future prospects of 2D-based photodetectors[J]. Advanced Materials, 2018, 30(51): 1801164.

    [12] [12] LONG M, LIU E, WANG P, et al. Broadband photovoltaic detectors based on an atomically thin heterostructure[J]. Nano Letters, 2016, 16(4): 2254-2259.

    [13] [13] DAS S, ROBINSON J A, DUBEY M, et al. Beyond graphene: Progress in novel two-dimensional materials and van der Waals solids[J]. Annual Review of Materials Research, 2015, 45(1): 1-27.

    [14] [14] AN J, WANG B, SHU C, et al. Research development of 2D materials based photodetectors towards mid-infrared regime[J]. Nano Select, 2021, 2(3): 527-540.

    [15] [15] ZHANG X, LI J, MA Z, et al. Design and integration of a layered MoS2/GaN van der Waals heterostructure for wide spectral detection and enhanced photoresponse[J]. ACS Applied Materials & Interfaces, 2020, 12(42): 47721-47728.

    [16] [16] NOVOSELOV K S, MISHCHENKO A, CARVALHO A, et al. 2D materials and van der Waals heterostructures[J]. Science, 2016, 353(6298): 461-472.

    [17] [17] LIU Y, WEISS N O, DUAN X, et al. Van der Waals heterostructures and devices[J]. Nature Reviews Materials, 2016, 1(9): 16042.

    [18] [18] WANG P, JIA C, HUANG Y, et al. Van der Waals heterostructures by design: From 1D and 2D to 3D[J]. Matter, 2021, 4(2): 552-581.

    [19] [19] JARIWALA D, MARKS T J, HERSAM M C. Mixed-dimensional van der Waals heterostructures[J]. Nature Materials, 2017, 16(2): 170-181.

    [20] [20] NUTTING D, FELIX J F, TILLOTSON E, et al. Heterostructures formed through abraded van der Waals materials[J]. Nature Communication, 2020, 11(1): 1-10.

    [21] [21] WANG J, FANG H, WANG X, et al. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared[J]. Nano Micro Small, 2017, 13(35): 1700894.

    [22] [22] KAGAN C R, LIFSHITZ E, SARGENT E H, et al. Building devices from colloidal quantum dots[J]. Science, 2016, 353(6302): 885-894.

    [23] [23] CHEN H, LIU H, ZHANG Z, et al. Nanostructured photodetectors: From ultraviolet to Terahertz[J]. Advanced Materials, 2016, 28(3): 403-433.

    [24] [24] DHYANI V, DAS S. High-speed scalable silicon-MoS2 P-N heterojunction photodetectors[J]. Scientific Reports, 2017, 7(1): 1-9.

    [25] [25] FENG X, HE Z, LIU Z, et al. Intact vertical 3D-0D-2D carbon-based P-N junctions for use in high-performance photodetectors[J]. Advanced Optical Materials, 2021, 9(16): 2100387.

    [26] [26] ZHANG S, GUAN L, NIU X, et al. Design and build MoS2/Au/MoS2 sandwich structure to significantly enhance the photoluminescence[J]. AIP Advances, 2019, 9(9): 095305.

    [28] [28] KHAN I, SAEED K, KHAN I. Nanoparticles: Properties, applications and toxicities[J]. Arabian Journal of Chemistry, 2019, 12(7): 908-931.

    [29] [29] YU W J, LI Z, ZHOU H, et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters[J]. Nature Materials, 2013, 12(3): 246-252.

    [30] [30] ALIVISATOS A P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996, 271(5251): 933-937.

    [31] [31] BERA D, QIAN L, TSENG T, et al. Quantum dots and their multimodal applications: A review[J]. Materials, 2010, 3(4): 2260-2345.

    [32] [32] ZHOU W, SHANG Y, GARCA de ARQUER F P, et al. Solution-processed upconversion photodetectors based on quantum dots[J]. Nature Electronics, 2020, 3(5): 251-258.

    [33] [33] KONSTANTATOS G, BADIOLI M, GAUDREAU L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2012, 7(6): 363-368.

    [34] [34] KUFER D, NIKITSKIY I, LASANTA T, et al. Hybrid 2D-0D MoS2-PbS quantum dot photodetectors[J]. Advanced Materials, 2015, 27(1): 176-180.

    [35] [35] KUNDU B, ZDEMIR O, DALMASES M, et al. Hybrid 2D-QD MoS2-PbSe quantum dot broadband photodetectors with high-sensitivity and room-temperature operation at 2.5 m[J]. Advanced Optical Materials, 2021, 9(22): 2101378.

    [36] [36] KOLLI C S R, SELAMNENI V, MUNIZ MARTINEZ B A, et al. Broadband, ultra-high-responsive monolayer MoS2/SnS2 quantum-dot-based mixed-dimensional photodetector[J]. ACS Applied Materials & Interfaces, 2022, 14(13): 15415-15425.

    [37] [37] YU Y, ZHANG Y, ZHANG H, et al. PbS-decorated WS2 phototransistors with fast response[J]. ACS Photonics, 2017, 4(4): 950-956.

    [38] [38] HU C, DONG D, YANG X, et al. Synergistic effect of hybrid PbS quantum dots/2D-WSe2 toward high performance and broadband phototransistors[J]. Advanced Functional Materials, 2017, 27(2): 1603605.

    [39] [39] ZDEMIR O, RAMIRO I, GUPTA S, et al. High sensitivity hybrid PbS CQD-TMDC photodetectors up to 2 m[J]. ACS Photonics, 2019, 6(10): 2381-2386.

    [40] [40] LIU Q, TIAN H, LI J, et al. Hybrid Graphene/Cu2O quantum dot photodetectors with ultrahigh responsivity[J]. Advanced Optical Materials, 2019, 7(20): 1900455.

    [41] [41] HU A, TIAN H, LIU Q, et al. Graphene on self-assembled InGaN quantum dots enabling ultrahighly sensitive photodetectors[J]. Advanced Optical Materials, 2019, 7(8): 1801792.

    [42] [42] KAN H, ZHENG W, LIN R, et al. Ultrafast photovoltaic-type deep ultraviolet photodetectors using hybrid zero-/two-dimensional heterojunctions[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 8412-8418.

    [43] [43] DUAN R, QI W, LI P, et al. A high-performance MoS2-based visible-near-infrared photodetector from gateless photogating effect induced by nickel nanoparticles[J]. Research, 2023, 6: 0195.

    [44] [44] MUKHERJEE S, CHOWDHURY R K, KARMAKAR D, et al. Plasmon triggered, enhanced light-matter interactions in Au-MoS2 coupled system with superior photosensitivity[J]. Journal of Physical Chemistry, 2021, C125(20): 11023-11034.

    [45] [45] SELAMNENI V, MUKHERJEE A, RAGHAVAN H, et al. Plasmonic Au nanoparticles coated on ReS2 nanosheets for visible-near-infrared photodetectors[J]. ACS Applied Nano Materials, 2022, 5(8): 11381-11390.

    [46] [46] ZHENG L, ZHOU W, NING Z, et al. Ambipolar graphene-quantum dot phototransistors with CMOS compatibility[J]. Advanced Optical Materials, 2018, 6(23): 1800985.

    [47] [47] PAK S, CHO Y, HONG J, et al. Consecutive junction-induced efficient charge separation mechanisms for high-performance MoS2/quantum dot phototransistors[J]. ACS Applied Materials & Interfaces, 2018, 10(44): 38264-38271.

    [48] [48] KWAK D, RAMASAMY P, LEE Y, et al. High-performance hybrid InP QDs/black phosphorus photodetector[J]. ACS Applied Materials & Interfaces, 2019, 11(32): 29041-29046.

    [49] [49] ZHANG S, WANG X, CHEN Y, et al. Ultrasensitive hybrid MoS2-ZnCdSe quantum dot photodetectors with high gain[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23667-23672.

    [50] [50] JARIWALA D, SANGWAN V K, WU C, et al. Gate-tunable carbon nanotube-MoS2 heterojunction P-N diode[J]. Proceedings of the National Academy of Sciences, 2013, 110(45): 18076-18080.

    [51] [51] TAO J, JIANG J, ZHAO S, et al. Fabrication of 1D Te/2D ReS2 mixed-dimensional van der Waals P-N heterojunction for high-performance phototransistor[J]. ACS Nano, 2021, 15(2): 3241-3250.

    [52] [52] SHANG H, CHEN H, DAI M, et al. A mixed-dimensional 1D Se-2D InSe van der Waals heterojunction for high responsivity self-powered photodetectors[J]. Nanoscale Horizons, 2020, 5(3): 564-572.

    [53] [53] WU D, JIA C, SHI F, et al. Mixed-dimensional PdSe2/SiNWA heterostructure based photovoltaic detectors for self-driven, broadband photodetection, infrared imaging and humidity sensing[J]. Journal of Materials Chemistry, 2020, A8(7): 3632-3642.

    [54] [54] LEE T I, LEE S, LEE E, et al. High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly[J]. Advanced Materials, 2013, 25(21): 2920-2925.

    [55] [55] DU Y, QIU G, WANG Y, et al. One-dimensional van der Waals material tellurium: Raman spectroscopy under strain and magneto-transport[J]. Nano Letters, 2017, 17(6): 3965-3973.

    [56] [56] QIN J, QIU G, JIAN J, et al. Controlled growth of a large-size 2D selenium nanosheet and its electronic and optoelectronic applications[J]. ACS Nano, 2017, 11(10): 10222-10229.

    [57] [57] AN Q, MENG X, XIONG K, et al. Self-powered ZnS nanotubes/Ag nanowires MSM UV photodetector with high on/off ratio and fast response speed[J]. Scientific Reports, 2017, 7(1): 1-12.

    [58] [58] LI Y, SHI Z, WANG L, et al. Solution-processed one-dimensional CsCu2I3 nanowires for polarization-sensitive and flexible ultraviolet photodetectors[J]. Materials Horizons, 2020, 7(6): 1613-1622.

    [59] [59] NAWAZ M Z, XU L, ZHOU X, et al. CdS nanobelt-based self-powered flexible photodetectors with high photosensitivity[J]. Materials Advances, 2021, 2(18): 6031-6038.

    [60] [60] PATIL R A, CHANG C, DEVAN R S, et al. Impact of nanosize on supercapacitance: Study of 1D Nanorods and 2D thin-films of Nickel oxide[J]. ACS Applied Materials & Interfaces, 2016, 8(15): 9872-9880.

    [61] [61] QIN J K, QIU G, HE W, et al. Epitaxial growth of 1D atomic chain based Se nanoplates on monolayer ReS2 for high-performance photodetectors[J]. Advanced Functional Materials, 2018, 28(48): 1806254.

    [62] [62] DANG V Q, TRUNG T Q, KIM D, et al. Ultrahigh responsivity in graphene-ZnO nanorod hybrid UV photodetector[J]. Nano Micro Small, 2015, 11(25): 3054-3065.

    [63] [63] HUO J, ZOU G, XIAO Y, et al. High performance 1D-2D CuO/MoS2 photodetectors enhanced by femtosecond laser-induced contact engineering[J]. Materials Horizons, 2023, 10(2): 524-535.

    [64] [64] LIN P, ZHU L, LI D, et al. Tunable WSe2-CdS mixed-dimensional van der Waals heterojunction with a piezo-phototronic effect for an enhanced flexible photodetector[J]. Nanoscale, 2018, 10(30): 14472-14479.

    [65] [65] ZHAO D, CHEN Y, JIANG W, et al. Gate-tunable photodiodes based on mixed-dimensional Te/MoTe2 van der Waals heterojunctions[J]. Advanced Electronic Materials, 2021, 7(5): 2001066.

    [66] [66] ZHANG Y, DENG T, LI S, et al. Highly sensitive ultraviolet photodetectors based on single wall carbon nanotube-graphene hybrid films[J]. Applied Surface Science, 2020, 512(15): 145651.

    [67] [67] SUN G, LI B, LI J, et al. Direct van der Waals epitaxial growth of 1D/2D Sb2Se3/WS2 mixed-dimensional P-N heterojunctions[J]. Nano Research, 2019, 12(5): 1139-1145.

    [68] [68] GONG Y, ZHANG X, YANG T, et al. Vapor growth of CdS nanowires/WS2 nanosheet heterostructures with sensitive photodetections[J]. Nanotechnology, 2019, 30(34): 345603.

    [69] [69] WANG G, HAN B, MAK C H, et al. Mixed-dimensional van der Waals heterostructure for high-performance and air-stable perovskite nanowire photodetectors[J]. ACS Applied Materials & Interfaces, 2022, 14(49): 55183-55191.

    [70] [70] XIE C, ZENG L, ZHANG Z, et al. High-performance broadband heterojunction photodetectors based on multilayered PtSe2 directly grown on a Si substrate[J]. Nanoscale, 2018, 10(32): 15285-15293.

    [71] [71] LEE E W I, MA L, NATH D N, et al. Growth and electrical characterization of two-dimensional layered MoS2/SiC heterojunctions[J]. Applied Physics Letters, 2014, 105(20): 203504.

    [72] [72] KANISAWA K, YAMAGUCHI H, HIRAYAMA Y. Two-dimensional growth of InSb thin films on GaAs (111) a substrates[J]. Applied Physics Letters, 2000, 76(5): 589-591.

    [73] [73] LEE C H, McCULLOCH W, LEE E W I, et al. Transferred large area single crystal MoS2 field effect transistors[J]. Applied Physics Letters, 2015, 107(19): 043103.

    [74] [74] YAO J, ZHENG Z, YANG G. Ultrasensitive 2D/3D heterojunction multicolor photodetectors: A synergy of laterally and vertically aligned 2D layered materials[J]. ACS Applied Materials & Interfaces, 2018, 10(44): 38166-38172.

    [75] [75] WANG X, CHENG Z, XU K, et al. High-responsivity graphene/silicon heterostructure waveguide photodetectors[J]. Nature Photonics, 2013, 7(11): 888-891.

    [76] [76] MAO J, YU Y, WANG L, et al. Ultrafast, broadband photodetector based on MoSe2/silicon heterojunction with vertically standing layered structure using graphene as transparent electrode[J]. Advanced Science, 2016, 3(11): 1600018.

    [77] [77] LU Z, XU Y, YU Y, et al. Ultrahigh speed and broadband few-layer MoTe2/Si 2D-3D heterojunction-based photodiodes fabricated by pulsed laser deposition[J]. Advanced Functional Materials, 2020, 30(9): 1907951.

    [78] [78] WU D, GUO C, WANG Z, et al. A defect-induced broadband photodetector based on WS2/pyramid Si 2D/3D mixed-dimensional heterojunction with a light confinement effect[J]. Nanoscale, 2021, 13(31): 13550-13557.

    [79] [79] LI J, XI X, LIN S, et al. Ultrahigh sensitivity graphene/nanoporous GaN ultraviolet photodetectors[J]. ACS Applied Materials & Interfaces, 2020, 12(10): 11965-11971.

    [80] [80] ZHANG Y, WANG B, HAN Z, et al. Bidirectional photoresponse in a mixed-dimensional MoS2/Ge heterostructure and its optic-neural synaptic behavior for colored pattern recognition[J]. ACS Photonics, 2023, 10(5): 1575-1582.

    [81] [81] JIA C, WU D, WU E, et al. A self-powered high-performance photodetector based on a MoS2/GaAs heterojunction with high polarization sensitivity[J]. Journal of Materials Chemistry C, 2019, 7(13): 3817-3821.

    [82] [82] WU D, GUO J, DU J, et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction[J]. ACS Nano, 2019, 13(9): 9907-9917.

    [83] [83] SORIFI S, KAUSHIK S, SINGH R. A GaSe/Si-based vertical 2D/3D heterojunction for high-performance self-driven photodetectors[J]. Nanoscale Advances, 2022, 4(2): 479-490.

    [84] [84] BRITNELL L, RIBEIRO R M, ECKMANN A, et al. Strong light-matter interactions in heterostructures of atomically thin films[J]. Science, 2013, 340(6138): 1311-1314.

    [85] [85] KIM Y, KIM S J, CHO S, et al. High-performance ultraviolet photodetectors based on solution-grown ZnS nanobelts sandwiched between graphene layers[J]. Scientific Reports, 2015, 5(1): 12345.

    [86] [86] NIAN Q, GAO L, HU Y, et al. Graphene/PbS-quantum dots/graphene sandwich structures enabled by laser shock imprinting for high performance photodetectors[J]. ACS Applied Materials & Interfaces, 2017, 9(51): 44715-44723.

    [87] [87] LI G, SONG Y, FENG S, et al. Improved optoelectronic performance of MoS2 photodetector via localized surface plasmon resonance coupling of double-layered Au nanoparticles with sandwich structure[J]. ACS Applied Electronic Materials, 2022, 4(4): 1626-1632.

    [88] [88] WANG G, LI L, FAN W, et al. Interlayer coupling induced infrared response in WS2/MoS2 heterostructures enhanced by surface plasmon resonance[J]. Advanced Functional Materials, 2018, 28(22): 1800339.

    [89] [89] ZENG P, WANG W, HAN D, et al. MoS2/WSe2 VDW heterostructures decorated with PbS quantum dots for the development of high-performance photovoltaic and broadband photodiodes[J]. ACS Nano, 2022, 16(6): 9329-9338.

    [90] [90] MAITY S, SARKAR K, KUMAR P. Layered heterostructures based on MoS2/MoSe2 nanosheets deposited on GaN substrates for photodetector applications[J]. ACS Applied Nano Materials, 2023, 6(6): 4224-4235.

    Tools

    Get Citation

    Copy Citation Text

    WANG Xule, CHENG Beitong, JIANG Ruomei, ZHOU Yong, XIE Xiumin, ZHAO Chaojun, ZHANG Wei, SONG Haizhi. Research progress on 2-D material based on hetero-dimension photodetectors[J]. Laser Technology, 2024, 48(6): 846

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 22, 2023

    Accepted: Feb. 13, 2025

    Published Online: Feb. 13, 2025

    The Author Email: SONG Haizhi (hzsong1296@163.com)

    DOI:10.7510/jgjs.issn.1001-3806.2024.06.010

    Topics