Journal of Quantum Optics, Volume. 29, Issue 3, 30802(2023)
Quantum Discord in Memory Pauli Channel
[1] [1] ALKENANI A, HIJAZI R, MUTHANA N, et al. New constructions of entanglement-assisted quantum codes[J]. Cryptogr Commun, 2022, 14(1):15-37. DOI: 10.1007/s12095-021-00499-7.
[2] [2] LIU B, XIA S, XIAO D, et al. Decoy-state method for quantum-key-distribution-based quantum private query[J]. Sci China-Phys Mech Astron, 2022, 65(4):45-52. DOI: 10.1007/s11433-021-1843-7.
[3] [3] HUANG Y, YANG W. Quantum teleportation via qutrit entangled state[J]. Chinese J Electron, 2020, 29(2):228-232. DOI: 10.1049/cje.2019.12.009.
[4] [4] BRASSARD G, NAYAK A, TAPP A, et al. Noisy interactive quantum communication[J]. Siam J Comput, 2019, 48(4):1147-1195. DOI: 10.1137/16M109867X.
[5] [5] RONG, Z B, QIU D W, MATEUS P, et al. Mediated semi-quantum secure direct communication[J]. Quantum Inf Process, 2021, 20(2):58. DOI: 10.1007/s11128-020-02965-2.
[6] [6] HORODECKI R, HORODECKI P, HORODECKI M, et al. Quantum entanglement[J]. Rev Mod Phys, 2009, 81(2):865. DOI: 10.1038/nphys2904.
[7] [7] MEYER D A. Sophisticated quantum search without entanglement[J]. Phys Rev Lett, 2000, 85(9):2014. DOI: 10.1103/PhysRevLett.85.2014.
[8] [8] LANYON B P, BARBIERI M, ALMEIDA M P, et al. Experimental quantum computing without entanglement[J]. Phys Rev Lett, 2008, 101(20):200501. DOI: 10.1103/PhysRevLett.101.200501.
[9] [9] OLLIVIER H, ZUREK W H. Quantum discord: a measure of the quantumness of correlations[J]. Phys Rev Lett, 2001, 88(1):017901. DOI: 10.1103/PhysRevLett.88.017901.
[10] [10] DATTA A, VIDAL G. Role of entanglement and correlations in mixed-state quantum computation[J]. Phys Rev A, 2007, 75(4):042310. DOI: 10.1103/PhysRevA.75.042310.
[11] [11] PIANI M, HORODECKI P, HORODECKI R. No-local-broadcasting theorem for multipartite quantum correlations[J]. Phys Rev Lett, 2008, 100(9):090502. DOI: 10.1103/PhysRevLett.100.090502.
[12] [12] KNILL E, LAFLAMME R. Power of one bit of quantum information[J]. Phys Rev Lett, 1998, 81(25):5672. DOI: 10.1103/PhysRevLett.81.5672.
[13] [13] XU L, WU G P, YAN L. Quantum entanglement and discord dynamics of two noninteracting spin qubits in two independent spin baths[J]. Int J Theor Phys, 2017, 56(3):874-886. DOI: 10.1007/s10773-016-3230-5.
[14] [14] DATTA A, SHAJI A, CAVES C M. Quantum discord and the power of one qubit[J]. Phys Rev Lett, 2008, 100(5):050502. DOI: 10.1103/PhysRevLett.100.050502.
[15] [15] GIROLAMI D, TUFARELLI T, ADESSO G. Characterizing nonclassical correlations via local quantum uncertainty. Phys Rev Lett, 2013, 110(24):240402. DOI: 10.1103/PhysRevLett.110.240402.
[16] [16] FANG Y, LIU X B, WANG J C, et al. Gaussian interferometric power in the localized two-mode gaussian states[J]. Quantum Inf Process, 2019, 18(8):248. DOI: 10.1007/s11128-019-2359-6.
[17] [17] XIAO X, FANG M F, LI Y L, et al. Quantum discord in non-markovian environments[J]. Opt Commun, 2010, 283(14):3001-3005. DOI: 10.1016/j.optcom.2010.03.046.
[18] [18] GUO H, LIU J M, ZHANG C J, et al. Quantum discord of a three-qubit W-class state in noisy environments. Quantum Inform Compu, 2012, 12(7-8):0677-0692. DOI: handle/10635/112495.
[19] [19] PENG X, TAO W, LIU Y. The Quantum correlations of the Werner state under quantum decoherence[J]. Int J Theor Phys, 2015, 54(6):1958-1967. DOI: 10.1007/s10773-014-2400-6.
[20] [20] GUO J L, ZHANG X Z. Quantum correlation dynamics subjected to critical spin environment with short-range anisotropic interaction[J]. Sci Rep, 2016, 6(1):32634. DOI: 10.1038/srep32634.
[21] [21] VEDRAL V. Classical correlations and entanglement in quantum measurements[J]. Phys Rev Lett, 2003, 90(5):050401. DOI: 10.1103/PhysRevLett.90.050401.
[22] [22] GHIU I, GRIMAUDO R, MIHAESCU R T, et al. Quantum correlation dynamics in controlled two-coupled-qubit systems[J]. Entropy, 2020, 22(7):785. DOI: 10.3390/e22070785.
[23] [23] FERRARO A, AOLITA L, CAVALCANTI D, et al. Almost all quantum states have nonclassical correlations[J]. Phys Rev A, 2010, 81(5):052318. DOI: 10.1103/PhysRevA.81.052318.
[24] [24] LUO S L. Quantum discord for two-qubit systems[J]. Phys Rev A, 2008, 77(4):042303. DOI: 10.1103/PhysRevA.77.042303.
[25] [25] ALI M, RAU A R P, ALBER G. Quantum discord for two-qubit X-states[J]. Phys Rev A, 2010, 81(4):042105. DOI: 10.1103/PhysRevA.81.042105.
[26] [26] WERNER R F.Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model[J]. Phys Rev A, 1989, 40(8):4277-4281. DOI: 10.1103/PhysRevA.40.4277.
[27] [27] GIROLAMI D, ADESSO G. Interplay between computable measures of entanglement and other quantum correlations[J]. Phys Rev A, 2011, 84(5):052110. DOI: 10.1103/PhysRevA.84.052110.
[28] [28] CHITAMBAR E. Quantum correlations in high-dimensional states of high symmetry[J]. Phys Rev A, 2012, 86(3):032110. DOI: 10.1103/PhysRevA.86.032110.
[29] [29] JOHNSON P D, VIOLA L. Compatible quantum correlations: extension problems for Werner and isotropic states[J]. Phys Rev A, 2013, 88(3):032323. DOI: 10.1103/PhysRevA.88.032323.
[30] [30] GIRARD M W, GOUR G. Entanglement monotones and transformations of symmetric bipartite states[J]. Phys Rev A, 2017, 95(1):012308. DOI: 10.1103/PhysRevA.95.012308.
[31] [31] THOMAS P, BOHMANN M, VOGEL W. Verifying bound entanglement of dephased Werner states[J]. Phys Rev A, 2017, 96(4):042321. DOI: 10.1103/PhysRevA.96.042321.
[32] [32] SINDICI E, PIANI M. Simple class of bound entangled states based on the properties of the antisymmetric subspace[J]. Phys Rev A, 2018, 97(3):032319. DOI: 10.1103/PhysRevA.97.032319.
[33] [33] YANG M C, LI J L, QIAO C F. The decompositions of Werner and isotropic states[J]. Quantum Inf Process, 2021, 20(8):1-11. DOI: 10.1007/s11128-021-03193-y.
[34] [34] LI N, LUO S L, SUN Y. Information-theoretic aspects of Werner states[J]. Ann Physics, 2021, 424(1):168371. DOI: 10.1016/j.aop.2020.168371.
[35] [35] XIE C M, ZHANG Z J, CHEN J L, et al. Quantum correlation swapping between Werner and separable states[J]. Laser Phys Lett, 2021, 18(3):035203. DOI: 10.1088/1612-202X/ABE4CA.
[36] [36] MACCHIAVELLO C, PALMA G M. Entanglement-enhanced information transmission over a quantum channel with correlated noise[J]. Phys Rev A, 65(5):050301. DOI: 10.1103/PhysRevA.65.050301.
[37] [37] CARUSO F, GIOVANNETTI V, MACCHIAVELLO C, et al. Qubit channels with small correlations[J]. Phys Rev A, 2008, 77(5):052323. DOI: 10.1103/PhysRevA.77.052323.
[38] [38] RAMZAN M, NAWAZ A, TOOR A H, et al. The effect of quantum memory on quantum games[J]. Phys A: Math Theor, 2008, 41(4):055307. DOI: 10.1088/1751-8113/41/5/055307.
[39] [39] MORIMAE T, KAHN J. Entanglement-fidelity relations for inaccurate ancilla-driven quantum computation[J]. Phys Rev A, 2010, 82(5):052314. DOI: 10.1103/PhysRevA.82.052314.
[40] [40] CHIRIBELLA G, D′ARIANO G M, PERINOTTI P. Memory effects in quantum channel discrimination[J]. Phys Rev Lett, 2008, 101(18):180501. DOI: 10.1103/PhysRevLett.101.180501.
[41] [41] BENENTI G, D′ARRIGO A, FALCI G. Enhancement of transmission rates in quantum memory channels with damping[J]. Phys Rev Lett, 2009, 103(2):020502. DOI: 10.1103/PhysRevLett.103.020502.
[42] [42] BUSCEMI F, DATTA N. The quantum capacity of channels with arbitrarily correlated noise[J]. IEEE Trans Inf Th, 2010, 56(3):1447-1460. DOI: 10.1109/TIT.2009.2039166.
Get Citation
Copy Citation Text
XUE Dan, BAI Ming-qiang, GUO Ji-hong, YANG Zhen. Quantum Discord in Memory Pauli Channel[J]. Journal of Quantum Optics, 2023, 29(3): 30802
Received: Feb. 22, 2023
Accepted: --
Published Online: Apr. 7, 2024
The Author Email: