Chinese Journal of Liquid Crystals and Displays, Volume. 36, Issue 2, 217(2021)

Research progress of flexible and printed OLED

LIU Di-xuan1、*, ZHONG Jin-yao2, TANG Biao3, CAO Xiu-hua4, XU Wei2, ZHOU Shang-xiong2, SHI Mu-yang2, YAO Ri-hui2, NING Hong-long2, and PENG Jun-biao2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    References(57)

    [1] [1] REINEKE S, LINDNER F, SCHWARTZ G, et al. White organic light-emitting diodes with fluorescent tube efficiency [J]. Nature, 2009, 459(7244): 234-238.

    [2] [2] UOYAMA H, GOUSHI K, SHIZU K, et al. Highly efficient organic light-emitting diodes from delayed fluorescence [J]. Nature, 2012, 492(7428): 234-238.

    [3] [3] MATSUSHIMA T, BENCHEIKH F, KOMINO T, et al. High performance from extraordinarily thick organic light-emitting diodes [J]. Nature, 2019, 572(7770): 502-506.

    [4] [4] KONDO Y, YOSHIURA K, KITERA S, et al. Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter [J]. Nature Photonics, 2019, 13(10): 678-682.

    [5] [5] LEE J H, CHEN C H, LEE P H, et al. Blue organic light-emitting diodes: current status, challenges, and future outlook [J]. Journal of Materials Chemistry C, 2019, 7(20): 5874-5888.

    [6] [6] GROSS M, MLLER D C, NOTHOFER H G, et al. Improving the performance of doped π-conjugated polymers for use in organic light-emitting diodes [J]. Nature, 2000, 405(6787): 661-665.

    [7] [7] BALDO M A, O’BRIEN D F, YOU Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature, 1998, 395(6698): 151-154.

    [8] [8] DAI X L, ZHANG Z X, JIN Y Z, et al. Solution-processed, high-performance light-emitting diodes based on quantum dots [J]. Nature, 2014, 515(7525): 96-99.

    [9] [9] SUN Y R, GIEBINK N C, KANNO H, et al. Management of singlet and triplet excitons for efficient white organic light-emitting devices [J]. Nature, 2006, 440(7086): 908-912.

    [10] [10] BYEON S Y, LEE D R, YOOK K S, et al. Recent progress of singlet-exciton-harvesting fluorescent organic light-emitting diodes by energy transfer processes [J]. Advanced Materials, 2019, 31(34): 1803714.

    [11] [11] TAO P, MIAO Y Q, WANG H, et al. High-performance organic electroluminescence: design from organic light-emitting materials to devices [J]. Chemical Record, 2019, 19(8): 1531-1561.

    [12] [12] ZHANG D W, LI M, CHEN C F. Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes [J]. Chemical Society Reviews, 2020, 49(5): 1331-1343.

    [21] [21] YOUNG N D, HARKIN G, BUNN R M, et al. Novel fingerprint scanning arrays using polysilicon TFT's on glass and polymer substrates [J]. IEEE Electron Device Letters, 1997, 18(1): 19-20.

    [27] [27] NOMURA K, OHTA H, TAKAGI A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors [J]. Nature, 2004, 432(7016): 488-492.

    [37] [37] NING H L, ZENG Y, KUANG Y D, et al. Room-temperature fabrication of high-performance amorphous In-Ga-Zn-O/Al2O3 thin-film transistors on ultrasmooth and clear nanopaper [J]. ACS Applied Materials & Interfaces, 2017, 9(33): 27792-27800

    [38] [38] SU L F, OU Y H, FENG X, et al. Integrated production of cellulose nanofibers and sodium carboxymethylcellulose through controllable eco-carboxymethylation under mild conditions [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 3792-3800.

    [39] [39] JEONG J A, SHIN H S, CHOI K H, et al. Flexible Al-doped ZnO films grown on PET substrates using linear facing target sputtering for flexible OLEDs [J]. Journal of Physics D: Applied Physics, 2010, 43(46): 465403.

    [40] [40] KWAK K, CHO K, KIM S. Stable bending performance of flexible organic light-emitting diodes using IZO anodes [J]. Scientific Reports, 2013, 3(1): 2787.

    [41] [41] FURUKAWA T, KODEN M. Novel roll-to-roll deposition and patterning of ITO on ultra-thin glass for flexible OLEDs [J]. IEICE Transactions on Electronics, 2017, E100.C(11): 949-954.

    [43] [43] HU L B, LI J F, LIU J, et al. Flexible organic light-emitting diodes with transparent carbon nanotube electrodes: problems and solutions [J]. Nanotechnology, 2010, 21(15): 155202.

    [44] [44] LI N, OIDA S, TULEVSKI G S, et al. Efficient and bright organic light-emitting diodes on single-layer graphene electrodes [J]. Nature Communications, 2013, 4(1): 2294.

    [45] [45] CHIANG C J, WINSCOM C, BULL S, et al. Mechanical modeling of flexible OLED devices [J]. Organic Electronics, 2009, 10(7): 1268-1274.

    [46] [46] NIU Y F, LIU S F, CHIOU J Y, et al. Improving the flexibility of AMOLED display through modulating thickness of layer stack structure [J]. Journal of the Society for Information Display, 2016, 24(5): 293-298.

    [47] [47] SCHAEPKENS M, KIM T W, GN ERLAT A, et al. Ultrahigh barrier coating deposition on polycarbonate substrates [J]. Journal of Vacuum Science & Technology A, 2004, 22(4): 1716-1722.

    [48] [48] VAN DE WEIJER P, BOUTEN P C P, UNNIKRISHNAN S, et al. High-performance thin-film encapsulation for organic light-emitting diodes [J]. Organic Electronics, 2017, 44: 94-98.

    [49] [49] HEBNER T R, WU C C, MARCY D, et al. Ink-jet printing of doped polymers for organic light emitting devices [J]. Applied Physics Letters, 1998, 72(5): 519-521.

    [50] [50] ZHENG H, ZHENG Y N, LIU N L, et al. All-solution processed polymer light-emitting diode displays [J]. Nature Communications, 2013, 4(1): 1971.

    [51] [51] WU Z Y, YAN L C, LI Y Q, et al. Development of 55-in. 8K AMOLED TV based on coplanar oxide thin-film transistors and inkjet printing process [J]. Journal of the Society for Information Display, 2020, 28(5): 418-427.

    [52] [52] TAO R Q, NING H L, CHEN J Q, et al. Inkjet printed electrodes in thin film transistors [J]. IEEE Journal of the Electron Devices Society, 2018, 6: 774-790.

    [54] [54] XING X, LIN T, HU Y X, et al. Inkjet printing high luminance phosphorescent OLED based on m-MTDATA: TPBi host [J]. Modern Physics Letters B, 2019, 33(12): 1950149.

    [55] [55] MU L, HE M J, JIANG C B, et al. Inkjet printing a small-molecule binary emitting layer for organic light-emitting diodes [J]. Journal of Materials Chemistry C, 2020, 8(20): 6906-6913.

    [56] [56] AMRUT C, LUSZCZYNSKA B, SZYMANSKI M Z, et al. Inkjet printing of thermally activated delayed fluorescence (TADF) dendrimer for OLEDs applications [J]. Organic Electronics, 2019, 74: 218-227.

    [57] [57] LI Y Z, LAN L F, HU S B, et al. Fully printed top-gate metal-oxide thin-film transistors based on scandium-zirconium-oxide dielectric [J]. IEEE Transactions on Electron Devices, 2019, 66(1): 445-450.

    [58] [58] LI Y Z, LAN L F, HU S B, et al. All inkjet-printed metal-oxide thin-film transistor array with good stability and uniformity using surface-energy patterns [J]. ACS Applied Materials & Interfaces, 2017, 9(9): 8194-8200.

    [59] [59] GORKINA A L, TSAPENKO A P, GILSHTEYN E P, et al. Transparent and conductive hybrid Graphene/carbon nanotube films [J]. Carbon, 2016, 100: 501-507.

    [60] [60] OKIMOTO H, TAKENOBU T, YANAGI K, et al. Tunable carbon nanotube thin-film transistors produced exclusively via inkjet printing [J]. Advanced Materials, 2010, 22(36): 3981-3986.

    [61] [61] PARK S, VOSGUERICHIAN M, BAO Z N. A review of fabrication and applications of carbon nanotube film-based flexible electronics [J]. Nanoscale, 2013, 5(5): 1727-1752.

    [62] [62] MAGDASSI S, BASSA A, VINETSKY Y, et al. Silver nanoparticles as pigments for water-based ink-jet inks [J]. Chemistry of Materials, 2003, 15(11): 2208-2217.

    [63] [63] KIM I, LEE T M, KIM J. A study on the electrical and mechanical properties of printed Ag thin films for flexible device application [J]. Journal of Alloys and Compounds, 2014, 596: 158-163.

    [64] [64] CHIOLERIO A, CAMARCHIA V, QUAGLIA R, et al. Hybrid Ag-based inks for nanocomposite inkjet printed lines: RF properties [J]. Journal of Alloys and Compounds, 2014, 615 Suppl 1: S501-S504.

    [65] [65] FRENS G. Controlled nucleation for the regulation of the particle size in Monodisperse gold suspensions [J]. Nature Physical Science, 1973, 241(105): 20-22.

    [66] [66] LEE J, LEE B, JEONG S, et al. Enhanced surface coverage and conductivity of cu complex ink-coated films by laser sintering [J]. Thin Solid Films, 2014, 564: 264-268.

    [68] [68] TAI Y L, YANG Z G. Facile and scalable preparation of solid silver nanoparticles (<10 nm) for flexible electronics [J]. ACS Applied Materials & Interfaces, 2015, 7(31): 17104-17111.

    [69] [69] WALKER S B, LEWIS J A. Reactive silver inks for patterning high-conductivity features at mild temperatures [J]. Journal of the American Chemical Society, 2012, 134(3): 1419-1421.

    [70] [70] DEEGAN R D, BAKAJIN O, DUPONT T F, et al. Capillary flow as the cause of ring stains from dried liquid drops [J]. Nature, 1997, 389(6653): 827-829.

    [71] [71] HU H, LARSON R G. Marangoni effect reverses coffee-ring depositions [J]. Journal of Physical Chemistry B, 2006, 110(14): 7090-7094.

    [72] [72] TRUSKETT V N, STEBE K J. Influence of surfactants on an evaporating drop: fluorescence images and particle deposition patterns [J]. Langmuir, 2003, 19(20): 8271-8279.

    [73] [73] STILL T, YUNKER P J, YODH A G. Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops [J]. Langmuir, 2012, 28(11): 4984-4988.

    [74] [74] LIU H M, XU W, TAN W Y, et al. Line printing solution-processable small molecules with uniform surface profile via ink-jet printer [J]. Journal of Colloid and Interface Science, 2016, 465: 106-111.

    [75] [75] FUKUDA K, SEKINE T, KUMAKI D, et al. Profile control of inkjet printed silver electrodes and their application to organic transistors [J]. ACS Applied Materials & Interfaces, 2013, 5(9): 3916-3920.

    [76] [76] TAO R Q, NING H L, FANG Z Q, et al. Homogeneous surface profiles of inkjet-printed silver nanoparticle films by regulating their drying microenvironment [J]. Journal of Physical Chemistry C, 2017, 121(16): 8992-8998.

    [77] [77] KO H Y, PARK J, SHIN H, et al. Rapid self-assembly of monodisperse colloidal spheres in an ink-jet printed droplet [J]. Chemistry of Materials, 2004, 16(22): 4212-4215.

    [78] [78] SOLTMAN D, SUBRAMANIAN V. Inkjet-printed line morphologies and temperature control of the coffee ring effect [J]. Langmuir, 2008, 24(5): 2224-2231.

    [79] [79] CRUZ S, ROCHA L A, VIANA J C. Enhanced printability of thermoplastic polyurethane substrates by silica particles surface interactions [J]. Applied Surface Science, 2016, 360: 198-206.

    [80] [80] ZHAO D J, HUANG W, DONG L W, et al. 5.5 inch full screen flexible high-resolution OLED display fabricated by ink jet printing method [J]. SID Symposium Digest of Technical Papers, 2019, 50(1): 945-948.

    [81] [81] SHAO L Q, DONG T, LIANG J S, et al. The development of 403ppi real RGB printing AMOLED [J]. SID Symposium Digest of Technical Papers, 2019, 50(1): 1943-1945.

    Tools

    Get Citation

    Copy Citation Text

    LIU Di-xuan, ZHONG Jin-yao, TANG Biao, CAO Xiu-hua, XU Wei, ZHOU Shang-xiong, SHI Mu-yang, YAO Ri-hui, NING Hong-long, PENG Jun-biao. Research progress of flexible and printed OLED[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(2): 217

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 11, 2020

    Accepted: --

    Published Online: Mar. 30, 2021

    The Author Email: LIU Di-xuan (1585776673@qq.com)

    DOI:10.37188/cjlcd.2020-0232

    Topics