Laser Technology, Volume. 47, Issue 4, 439(2023)
Progress in simulation of type-Ⅱ superlattice infrared detectors based on the k·p method
[1] [1] SAI-HALASZ G A, TSU R, ESAKI L. A new semiconductor superlattice [J]. Applied Physics Letters, 1977, 30(12): 651-653.
[2] [2] ESAKI L. InAs-GaSb superlattices-synthesized semiconductors and semimetals [J]. Journal of Crystal Growth, 1981, 52(1): 227-240.
[3] [3] SMITH D L, MAILHIOT C. Proposal for strained type Ⅱ superlattice infrared detectors [J]. Journal of Applied Physics, 1987, 62(6): 2545-2548.
[4] [4] DENTE G C, TILTON M L. Comparing pseudopotential predictions for InAs/GaSb superlattices [J]. Physical Review B, 2002, 66(16): 165307.
[5] [5] LIVNEH Y, KLIPSTEIN P C, KLIN O, et al. k·p model for the energy dispersions and absorption spectra of InAs/GaSb type-Ⅱ superlattices [J]. Physical Review B, 2012, 86(23): 235311.
[6] [6] NG S T, FAN W J, DANG Y X, et al. Comparison of electronic band structure and optical transparency conditions of InxGa1-xAs1-yNy/GaAs quantum wells calculated by 10-band, 8-band, and 6-band k·p models [J]. Physical Review B, 2005, 72(11): 115341.
[7] [7] YANG B. Investigation and application of type Ⅱ superlattice infrared optoelectronic materials[J]. China Basic Science, 2019, 21(1): 52-54 (in Chinese).
[8] [8] SHANG L T, WANG J, XING W R, et al. Overview of infrared detection type-Ⅱ superlattice technology(I) [J]. Laser & Infrared, 2021, 51(4): 404-414 (in Chinese).
[9] [9] BROWN G J, SZUMLOWICZ F, MAHALINGAM K, et al. Recent advances in InAs/GaSb superlattices for very long wavelength infrared detection [J]. Proceedings of the SPIE, 2003, 4999: 457-466.
[10] [10] WANG Y F, YU L J, QIAN M. Development of type-Ⅱ superla-ttices for very long wavelength infrared detector [J]. Electro-optic Technology Application, 2011, 26(2): 45-52(in Chinese).
[12] [12] XIE X M, XU Q, CHEN J, et al. Research progress on antimonide based type-Ⅱ superlattices mid- and long-infrared detectors[J].Laser Technology,2020,44(6):688-694(in Chinese).
[16] [16] KLIPSTEIN P C, LIVNEH Y, GLOZMAN A, et al. Modeling InAs/GaSb and InAs/InAsSb superlattice infrared detectors [J]. Journal of Electronic Materials, 2014, 43(8): 2984-2990.
[17] [17] PIKUS G E. Effect of deformation on the hole energy spectrum of germanium and silicon [J]. Soviet Physics-Solid State, 1960, 1: 1502-1517.
[18] [18] XU S Y. Band structure calculation of strained germanium based on high-order k·p method[D]. Xi’an: Xidian University, 2015: 88(in Chinese).
[19] [19] QIAO P F, MOU S, CHUANG S L. Electronic band structures and optical properties of type-Ⅱ superlattice photodetectors with interfacial effect [J]. Optics Express, 2012, 20(3): 2319-2334.
[20] [20] SCHEINERT M. Optical pumping: A possible approach towards a SiGe quantum cascade laser [DB/OL].(2007-10-08)[2022-05-06].https://123dok.net/document/yng7kn51-optical-pumping-possible-approach-towards-quantum-cascade-laser.html.
[21] [21] BAHDER T B. Eight-band k·p model of strained zinc-blende crystals [J]. Physical Review B, 1990, 41(17): 11992.
[22] [22] WOOD D M, ZUNGER A. Successes and failures of the k·p method: A direct assessment for GaAs/AlAs quantum structures [J]. Physical Review B, 1996, 53(12): 7949-7963.
[23] [23] BAHDER T B. Analytic dispersion relations near the Γ point in strained zinc-blende crystals [J]. Physical Review B, 1992, 45(4): 1629-1637.
[24] [24] BASSANIF, PARRAVICINI G P, BALLINGER R A, et al. Electronic states and optical transitions in solids [J]. Physics Today, 1976, 29(3): 58-59.
[25] [25] BURT M G. The justification for applying the effective-mass approximation to microstructures[J]. Journal of Physics: Condensed Ma-tter, 1992, 4(32): 6651.
[26] [26] KLIPSTEIN P C. Operator ordering and interface-band mixing in the Kane-like Hamiltonian of lattice-matched semiconductor superlattices with abrupt interfaces [J]. Physical Review B, 2010, 81(23): 235314.
[27] [27] LIU C X, QI X L, ZHANG H, et al. Model Hamiltonian for topological insulators [J]. Physical Review B, 2010, 82(4): 045122.
[28] [28] SZMULOWICZ F. Derivation of a general expression for the momentum matrix elements within the envelope-function approximation [J]. Physical Review B, 1995, 51(3): 1613-1623.
[29] [29] CHANG Y C, JAMES R B. Saturation of intersubband transitions in P-type semiconductor quantum wells [J]. Physical Review B, 1989, 39(17): 12672-12681.
[30] [30] KLIPSTEIN P C, LIVNEH Y, KLIN O, et al. A k·p model of InAs/GaSb type Ⅱ superlattice infrared detectors [J]. Infrared Physics & Technology, 2013, 59(6): 53-59.
[31] [31] RAZEGHI M, NGUYEN B M, DELAUNAY P Y, et al. State-of-the-art type Ⅱ antimonide-based superlattice photodiodes for infrared detection and imaging [J]. Proceedings of the SPIE, 2009, 7467: 181-193.
[32] [32] RODRIGUEZ J B, CHRISTOL P, CHEVRIER F, et al. Optical characterization of symmetric InAs/GaSb superlattices for detection in the 3-5 μm spectral region [J]. Physica,2005, E28(2): 128-133.
[33] [33] HAUGAN H J, BROWN G J, SMULOWICZ F, et al. InAs/GaSb type-Ⅱ superlattices for high performance mid-infrared detectors [J]. Journal of Crystal Growth, 2005, 278(1/4): 198-202.
[34] [34] HAO R T, XU Y Q, ZHOU Z Q, et al. MBE growth of very short period InAs/GaSb type-Ⅱ superlattices on (001) GaAs substrates [J]. Journal of Physics, 2007, D40(21): 6690-6693.
[35] [35] LI J B, LI D Sh, YANG Y L et al. Ⅲ-Ⅴ semiconductor infrared detector research in SCD of israel [J]. Infrared Technology, 2018, 40(10): 936-945(in Chinese).
[38] [38] MANYK T, HACKIEWICZ K, RUTKOWSKI J, et al. Theoretical simulation of T2SLs InAs/GaSb cascade photodetector for HOT condition [J]. Journal of Semiconductors, 2018, 39(9): 094004
[39] [39] ZHU X B, PENG Zh Y, CAO X C, et al. Mid-/short-wavelength dual-color infrared focal plane arrays based on type-Ⅱ InAs/GaSb superlattice [J]. Infrared and Laser Engineering, 2019, 48(11): 102-107.(in Chinese).
[40] [40] KIM H S. Dark current analysis of an InAs/GaSb type Ⅱ superla-ttice infrared photodiode with SiO2 passivation [J]. Journal of the Korean Physical Society, 2021, 78(11): 1141-1146.
[41] [41] KESARIA M, ALSHAHRANI D, KWAN D, et al. Optical and electrical performance of 5 μm InAs/GaSb type-Ⅱ superlattice for NOx sensing application-ScienceDirect [J]. Materials Research Bu-lletin, 2021, 142: 111424.
[42] [42] KRIZMAN G, CAROSELLA F, BERMEJO-ORTIZ J, et al. Magneto-spectroscopy investigation of InAs/InAsSb superlattices for midwave infrared detection [J]. Journal of Applied Physics, 2021, 130(5): 055704.
[43] [43] DU Y N, WANG L, XU Y, et al. Design and calculation of type-Ⅱ superlattice resonant cavity-enhanced photodetector with high quantum efficiency and low dark current [J]. Physica, 2021, 619: 413201.
[44] [44] SINGH A, MUKHERJEE S, MURALIDHARAN B. Comprehensive quantum transport analysis of M-superlattice structures for barrier infrared detectors [J]. Journal of Applied Physics, 2022, 131(9): 094303.
[45] [45] HAO X, TENG Y, ZHU H, et al. High-operating-temperature MWIR photodetector based on a InAs/GaSb superlattice grown by MOCVD [J]. Journal of Semiconductors, 2022, 43(1): 53-56.
[46] [46] NGUYEN B M, HOFFMAN D, DELAUNAY P Y, et al. Dark cu-rrent suppression in type Ⅱ InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure barrier [J]. Applied Physics Letters, 2007, 91(16): 163511.
[47] [47] SUNDARAM M, REISINGER A, DENNIS R, et al. 1024×1024 LWIR SLS FPAs: Status and characterization [J].Proceedings of the SPIE, 2012, 8353:83530W.
[48] [48] KLIPSTEIN P C, AVNON E, BENNY Y, et al. InAs/GaSb type Ⅱ superlattice barrier devices with a low dark current and a high-quantum efficiency [J].Proceedings of the SPIE, 2014, 9070: 90700U.
[49] [49] WANG F, CHEN J, XU Z, et al. Molecular beam epitaxy growth of high quality InAs/GaSb type-Ⅱ superlattices for long wavelength infrared detection [J].Proceedings of the SPIE, 2014,9300: 930008.
[50] [50] KLIPSTEIN P C, AVNON E, AZULAI D, et al. Type Ⅱ superla-ttice technology for LWIR detectors[J].Proceedings of the SPIE, 2016,9819: 98190T.
[51] [51] HUANG M, HE L, CHEN J, et al. InAs/GaAsSb type-Ⅱ superlattice LWIR focal plane arrays detectors grown on InAs substrates [J]. IEEE Photonics Technology Letters, 2020, 32(8): 453-456.
[52] [52] KOPYTKO M, GOMKA E, MANYK T, et al. Barrier in the valence band in the nBn detector with an active layer from the type-Ⅱ superlattice article info abstract [J]. Opto-Electronics Review, 2021, 29: 1-4.
[53] [53] MARTYNIUK P, WOJTAS J, MICHALCZEWSKI K, et al. Demonstration of the long wavelength InAs/InAsSb type-Ⅱ superlattice based methane sensor-ScienceDirect [J]. Sensors and Actuators A: Physical, 2021, 332: 113107.
[54] [54] LI X, JIANG D, ZHANG Y, et al. Investigations of quantum efficiency in type-Ⅱ InAs/GaSb very long wavelength infrared superla-ttice detectors [J]. Superlattices and Microstructures, 2016, 92: 330-336.
[55] [55] YUE Zh H. Design and simulation of sb-based superlattice very-long-wavelength infrared detector [D]. Nanjing: Nanjing University, 2020: 76(in Chinese).
Get Citation
Copy Citation Text
SUN Tong, GUAN Xiaoning, ZHANG Fan, SONG Haizhi, LU Pengfei. Progress in simulation of type-Ⅱ superlattice infrared detectors based on the k·p method[J]. Laser Technology, 2023, 47(4): 439
Category:
Received: Jun. 27, 2022
Accepted: --
Published Online: Dec. 11, 2023
The Author Email: LU Pengfei (photon.bupt@gmail.com)