Journal of the Chinese Ceramic Society, Volume. 50, Issue 1, 134(2022)
Structural Design of Organic Sulfides for Lithium Sulfur Batteries and Its Relative Scientific Issues
[4] [4] DANUTA H, JULIUSZ U. Electric dry cells and storage batteries[P]. US Patent, 3043896. 1962-10-07.
[5] [5] LI G, WANG S, ZHANG Y, et al. Revisiting the role of polysulfides in lithium-sulfur batteries[J]. Adv Mater, 2018, 30(22): e1705590.
[6] [6] JI X, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nat Mater, 2009, 8(6): 500-506.
[7] [7] XU D, LIANG M, QI S, et al. The progress and prospect of tunable organic molecules for organic lithium-ion batteries[J]. ACS Nano, 2021, 15(1): 47-80.
[8] [8] VISCO S J, DEJONGHE L C. Ionic conductivity of organosulfur melts for advanced storage electodes[J]. J Electrochem Soc,1987, 135(12): 2905-2909.
[9] [9] NAOI K, KAWASE K I, INOUE Y. A new energy storage material: Organosulfur compounds based on multiple sulfur-sulfur bonds[J]. J Electrochem Soc, 1997, 144(6): L170-L172.
[10] [10] WU M, CUI Y, BHARGAV A, et al. Organotrisulfide: A high capacity cathode material for rechargeable lithium batteries[J]. Angew Chem Int Ed, 2016, 55(34): 10027-10031.
[11] [11] WU M, BHARGAV A, CUI Y, et al. Highly reversible diphenyl trisulfide catholyte for rechargeable lithium batteries[J]. ACS Energy Lett, 2016, 1(6): 1221-1226.
[12] [12] GUO W, WAWRZYNIAKOWSKI Z D, CERDA M M, et al. Bis(aryl) tetrasulfides as cathode materials for rechargeable lithium batteries[J]. Chem-Eur J, 2017, 23(67): 16941-16947.
[13] [13] BHARGAV A, BELL M E, KARTY J, et al. A class of organopolysulfides as liquid cathode materials for high-energy-density lithium batteries[J]. ACS Appl Mater Interfaces, 2018, 10(25): 21084-21090.
[14] [14] LI F, SI Y, LI Z, et al. Intermolecular cyclic polysulfides as cathode materials for rechargeable lithium batteries[J]. J Mater Chem A, 2020, 8(1): 87-90.
[15] [15] BHARGAV A, CHANG C-H, FU Y, et al. Rationally designed high-sulfur-content polymeric cathode material for lithium-sulfur batteries[J]. ACS Appl Mater Interfaces, 2019, 11(6): 6136-6142.
[16] [16] BHARGAV A, BELL M, CUI Y, et al. Polyphenylene tetrasulfide as an inherently flexible cathode material for rechargeable lithium batteries[J]. ACS Appl Energy Mater, 2018, 1(11): 5859-5864.
[17] [17] SANG P, SI Y, FU Y. Polyphenyl polysulfide: a new polymer cathode material for Li-S batteries[J]. Chem Commun, 2019, 55(33): 4857-4860.
[18] [18] SANG P, SONG J, GUO W, et al. Hyperbranched organosulfur polymer cathode materials for Li-S battery[J]. Chem Eng J, 2021, 415(7179),129043.
[19] [19] PREEFER M B, OSCHMANN B, HAWKER C J, et al. High sulfur content material with stable cycling in lithium-sulfur batteries[J]. Angew Chem Int Ed Engl, 2017, 56(47): 15118-15122.
[20] [20] CHUNG W J, GRIEBEL J J, KIM E T, et al. The use of elemental sulfur as an alternative feedstock for polymeric materials[J]. Nat Chem, 2013, 5(6): 518-524.
[21] [21] CHALKER J M, WORTHINGTON M J H, LUNDQUIST N A, et al. Synthesis and applications of polymers made by inverse vulcanization[J]. Top Curr Chem, 2019, 377(3): 16.
[22] [22] SIMMONDS A G, GRIEBEL J J, PARK J, et al. Inverse vulcanization of elemental sulfur to prepare polymeric electrode materials for Li-S batteries[J]. ACS Macro Lett, 2014, 3(3): 229-232.
[23] [23] SHUKLA S, GHOSH A, ROY P K, et al. Cardanol benzoxazines-A sustainable linker for elemental sulphur based copolymers via inverse vulcanisation[J]. Polymer, 2016, 99, 349-357.
[24] [24] HOEFLING A, LEE Y J, THEATO P. Sulfur-based polymer composites from vegetable oils and elemental sulfur: A sustainable active material for Li-S batteries[J]. Macrom Chem Phys, 2017, 218(1): 1600303.
[25] [25] WU F, CHEN S, SROT V, et al. A sulfur-limonene-based electrode for lithium-sulfur batteries: high-performance by self-protection[J]. Adv Mater, 2018, 30(13): 1706643.
[26] [26] TROFIMOV B A, SKOTHEIM T A, ANDRIYANKOVA L V, et al. Sulfurization of polymers[J]. Russ Chem B+, 1999, 48(3): 462-466.
[27] [27] GOMEZ I, MECERREYES D, BLAZQUEZ J A, et al. Inverse vulcanization of sulfur with divinylbenzene: Stable and easy processable cathode material for lithium-sulfur batteries[J]. J Power Sources, 2016, 329, 72-78.
[28] [28] GOMEZ I, LEONET O, BLAZQUEZ J A, et al. Inverse vulcanization of sulfur using natural dienes as sustainable materials for lithium-sulfur batteries[J]. ChemSusChem, 2016, 9(24): 3419-3425.
[29] [29] HOEFLING A, NGUYEN D T, LEE Y J, et al. A sulfur-eugenol allyl ether copolymer: A material synthesized via inverse vulcanization from renewable resources and its application in Li-S batteries[J]. Mater Chem Front, 2017, 1(9): 1818-1822.
[30] [30] ZENG S, LI L, YU J, et al. Highly crosslinked organosulfur copolymer nanosheets with abundant mesopores as cathode materials for efficient lithium-sulfur batteries[J]. Electrochim Acta, 2018, 263, 53-59.
[31] [31] KANG H, KIM H, PARK M J. Sulfur-rich polymers with functional linkers for high-capacity and fast-charging lithium-sulfur batteries[J]. Adv Energy Mater, 2018, 8(32): 1802423.
[32] [32] LIU X, LU Y, ZENG Q, et al. Trapping of polysulfides with sulfur-rich poly ionic liquid cathode materials for ultralong-life lithium-sulfur batteries[J]. ChemSusChem, 2020, 13(4): 715-723.
[34] [34] WANG J, ZHANG S. A novel sulfur-based terpolymer cathode material for lithium-sulfur battery[J]. Energy Technol-GER, 2020, 8(5): 2000057.
[35] [35] BAYRAM O, KISKAN B, DEMIR E, et al. Advanced thermosets from sulfur and renewable benzoxazine and ionones via inverse vulcanization[J]. ACS Sustain Chem Eng, 2020, 8(24): 9145-9155.
[36] [36] TROFIMOV B A, SKOTHEIM T A, ANDRIYANKOVA L V, et al. Sulfurization of polymers[J]. Russ Chem Bull, 1999, 48(3): 462-466.
[37] [37] WANG J, YANG J, XIE J, et al. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries[J]. Adv Mater, 2002, 14(13/14): 963-965.
[38] [38] WANG W, CAO Z, ELIA G A, et al. Recognizing the mechanism of sulfurized polyacrylonitrile cathode materials for Li-S batteries and beyond in Al-S batteries[J]. ACS Energy Lett, 2018, 3(12): 2899-2907.
[39] [39] WERET M A, JEFFREY KUO C-F, ZELEKE T S, et al. Mechanistic understanding of the sulfurized-poly(acrylonitrile) cathode for lithium-sulfur batteries[J]. Energy Storage Mater, 2020, 26, 483-493.
[40] [40] PEREZ BELTRAN S, BALBUENA P B. Sulfurized polyacrylonitrile for high-performance lithium-sulfur batteries: in-depth computational approach revealing multiple sulfur's reduction pathways and hidden Li+ storage mechanisms for extra discharge capacity[J]. ACS Appl Mater Interfaces, 2021, 13(1): 491-502.
[41] [41] HUANG C J, LIN K Y, HSIEH Y C, et al. New insights into the N-S bond formation of a sulfurized-polyacrylonitrile cathode material for lithium-sulfur batteries[J]. ACS Appl Mater Interfaces, 2021, 13(12): 14230-14238.
[42] [42] WANG D-Y, SI Y, LI J, et al. Tuning the electrochemical behavior of organodisulfides in rechargeable lithium batteries using N-containing heterocycles[J]. J Mater Chem A, 2019, 7(13): 7423-7429.
[43] [43] KIM H, LEE J, AHN H, et al. Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-sulfur batteries[J]. Nat Commun, 2015, 6, 7278.
[44] [44] BHARGAV A, MA Y, SHASHIKALA K, et al. The unique chemistry of thiuram polysulfides enables energy dense lithium batteries[J]. J Mater Chem A, 2017, 5(47): 25005-25013.
[45] [45] WANG D Y, SI Y, GUO W, et al. Long cycle life organic polysulfide catholyte for rechargeable lithium batteries[J]. Adv Sci, 2019, 7(4): 1902646.
[46] [46] MA S, ZHANG Z, WANG Y, et al. Iodine-doped sulfurized polyacrylonitrile with enhanced electrochemical performance for lithium sulfur batteries in carbonate electrolyte[J]. Chem Eng J, 2021, 418: 129410.
[47] [47] ABOUIMRANE A, DAMBOURNET D, CHAPMAN K W, et al. A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode[J]. J Am Chem Soc, 2012, 134(10): 4505-4508.
[48] [48] CHEN X, PENG L, WANG L, et al. Ether-compatible sulfurized polyacrylonitrile cathode with excellent performance enabled by fast kinetics via selenium doping[J]. Nat Commun, 2019, 10(1): 1021.
[49] [49] ZHOU J, QIAN T, XU N, et al. Selenium-doped cathodes for lithium-organosulfur batteries with greatly improved volumetric capacity and coulombic efficiency[J]. Adv Mater, 2017, 29(33): 1701294.
[51] [51] BHARGAV A, PATIL S V, FU Y. A phenyl disulfide@CNT composite cathode for rechargeable lithium batteries[J]. Sustain Energy Fuels, 2017, 1(5): 1007-1012.
[52] [52] AMIN K, MENG Q, AHMAD A, et al. A carbonyl compound-based flexible cathode with superior rate performance and cyclic stability for flexible lithium-ion batteries[J]. Adv Mater, 2018, 30(4): 1703868.
[54] [54] SHEN K, MEI H, LI B, et al. 3D printing sulfur copolymer-graphene architectures for Li-S batteries[J]. Adv Energy Mater, 2018, 8(4): 1701527.
[55] [55] WANG X, QIAN Y, WANG L, et al. Sulfurized polyacrylonitrile cathodes with high compatibility in both ether and carbonate electrolytes for ultrastable lithium-sulfur batteries[J]. Adv Funct Mater, 2019, 29(39): 1902929.
[56] [56] LIU T, HU H, DING X, et al. 12 years roadmap of the sulfur cathode for lithium sulfur batteries (2009-2020)[J]. Energy Storage Mater, 2020, 30: 346-366.
Get Citation
Copy Citation Text
WANG Lei, CUI Xiang, DONG Hanghang, PENG Qianqian, QI Shuo, YU Qijie, YU Xuan, SUN Weiwei, LYU Liping, WANG Yong, CHEN Shuangqiang. Structural Design of Organic Sulfides for Lithium Sulfur Batteries and Its Relative Scientific Issues[J]. Journal of the Chinese Ceramic Society, 2022, 50(1): 134
Special Issue:
Received: Aug. 5, 2021
Accepted: --
Published Online: Nov. 14, 2022
The Author Email: