[1] W. Shi, Y. Tian, A. Gervais. Scaling capacity of fiber-optic transmission systems via silicon photonics. Nanophotonics, 9, 4629-4663(2020).
[2] D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, M. Nedeljkovic. Roadmap on silicon photonics. J. Opt., 18, 073003(2016).
[3] J. Witzens. High-speed silicon photonics modulators. Proc. IEEE, 106, 2158-2182(2018).
[4] S. Chen, X. Fu, J. Wang, Y. Shi, S. He, D. Dai. Compact dense wavelength-division (de)multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach–Zehnder interferometer. J. Lightwave Technol., 33, 2279-2285(2015).
[5] J. Zhang, B. P.-P. Kuo, S. Radic. 64 Gb/s PAM4 and 160 Gb/s 16QAM modulation reception using a low-voltage Si-Ge waveguide-integrated APD. Opt. Express, 28, 23266-23273(2020).
[6] D. Liang, J. E. Bowers. Recent progress in lasers on silicon. Nat. Photonics, 4, 511-517(2010).
[7] T. Horikawa, D. Shimura, H. Okayama, S. Jeong, H. Takahashi, J. Ushida, Y. Sobu, A. Shiina, M. Tokushima, K. Kinoshita, T. Mogami. A 300-mm silicon photonics platform for large-scale device integration. IEEE J. Sel. Top. Quantum Electron., 24, 8200415(2018).
[8] C. Doerr. Silicon photonic integration in telecommunications. Front. Phys., 3, 37(2015).
[9] S. Y. Siew, B. Li, F. Gao, H. Y. Zheng, W. Zhang, P. Guo, S. W. Xie, A. Song, B. Dong, L. W. Luo, C. Li, X. Luo, G.-Q. Lo. Review of silicon photonics technology and platform development. J. Lightwave Technol., 39, 4374-4389(2021).
[10] A. Novack, M. Streshinsky, R. Ding, Y. Liu, E.-J. Lim Andy, G.-Q. Lo, T. Baehr-Jones, M. Hochberg. Progress in silicon platforms for integrated optics. Nanophotonics, 3, 205-214(2014).
[11] D. Liu, C. Zhang, D. Liang, D. Dai. Submicron-resonator-based add-drop optical filter with an ultra-large free spectral range. Opt. Express, 27, 416-422(2019).
[12] Y. Yanagase, S. Suzuki, Y. Kokubun, S. T. Chu. Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter. J. Lightwave Technol., 20, 1525-1529(2002).
[13] H. Wang, J. Dai, H. Jia, S. Shao, X. Fu, L. Zhang, L. Yang. Polarization-independent tunable optical filter with variable bandwidth based on silicon-on-insulator waveguides. Nanophotonics, 7, 1469-1477(2018).
[14] M. R. Watts, T. Barwicz, M. Popovic, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, F. Kaertner. Microring-resonator filter with doubled free-spectral-range by two-point coupling. Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, CMP3(2005).
[15] D. Yi, Y. Zhang, H. K. Tsang. Doubling the free spectral range of a micro-ring resonator without reducing the resonator length. Asia Communications and Photonics Conference (ACPC), M3D.5(2019).
[16] R. Boeck, J. Flueckiger, L. Chrostowski, N. A. F. Jaeger. Experimental performance of DWDM quadruple Vernier racetrack resonators. Opt. Express, 21, 9103-9112(2013).
[17] P. Dong, N.-N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, M. Asghari. GHz-bandwidth optical filters based on high-order silicon ring resonators. Opt. Express, 18, 23784-23789(2010).
[18] D. Liu, L. Zhang, Y. Tan, D. Dai. High-order adiabatic elliptical-microring filter with an ultra-large free-spectral-range. J. Lightwave Technol., 39, 5910-5916(2021).
[19] Q. Zhu, X. Jiang, Y. Yu, R. Cao, H. Zhang, D. Li, Y. Li, L. Zeng, X. Guo, Y. Zhang, C. Qiu. Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators. IEEE Photon. J., 10, 6600311(2018).
[20] F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, B. J. Offrein. Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing. Opt. Express, 21, 11652-11658(2013).
[21] B. Liu, Y. Zhang, Y. He, X. Jiang, J. Peng, C. Qiu, Y. Su. Silicon photonic bandpass filter based on apodized subwavelength grating with high suppression ratio and short coupling length. Opt. Express, 25, 11359-11364(2017).
[22] Q. Deng, L. Liu, R. Zhang, X. Li, J. Michel, Z. Zhou. Athermal and flat-topped silicon Mach-Zehnder filters. Opt. Express, 24, 29577-29582(2016).
[23] P. Zheng, X. Xu, G. Hu, R. Zhang, B. Yun, Y. Cui. Integrated multi-functional optical filter based on a self-coupled microring resonator assisted MZI structure. J. Lightwave Technol., 39, 1429-1437(2021).
[24] E. J. Stanton, N. Volet, J. E. Bowers. Low-loss demonstration and refined characterization of silicon arrayed waveguide gratings in the near-infrared. Opt. Express, 25, 30651-30663(2017).
[25] A. Stoll, Z. Zhang, R. Haynes, M. Roth. High-resolution arrayed-waveguide-gratings in astronomy: design and fabrication challenges. Photonics, 4, 30(2017).
[26] J. F. Bauters, J. R. Adleman, M. J. Heck, J. E. Bowers. Design and characterization of arrayed waveguide gratings using ultra-low loss Si3N4 waveguides. Appl. Phys. A, 116, 427-432(2014).
[27] S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, W. Bogaerts. Optimized silicon AWG with flattened spectral response using an MMI aperture. J. Lightwave Technol., 31, 87-93(2013).
[28] J. Wang, Z. Sheng, L. Li, A. Pang, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, F. Gan. Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology. Opt. Express, 22, 9395-9403(2014).
[29] S. Pathak, D. Van Thourhout, W. Bogaerts. Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications. Opt. Lett., 38, 2961-2964(2013).
[30] S. Cheung, T. Su, K. Okamoto, S. J. B. Yoo. Ultra-compact silicon photonic 512 × 512 25 GHz arrayed waveguide grating router. IEEE J. Sel. Top. Quantum Electron., 20, 310-316(2014).
[31] C. Xie, X. Zou, F. Zou, L. Yan, W. Pan, Y. Zhang. 32-channel 100 GHz wavelength division multiplexer by interleaving two silicon arrayed waveguide gratings. Chin. Phys. B, 30, 120703(2021).
[32] L. Zhu, J. Sun, Y. Zhou. Silicon-based wavelength division multiplexer using asymmetric grating-assisted couplers. Opt. Express, 27, 23234-23249(2019).
[33] D. Liu, L. Zhang, H. Jiang, D. Dai. First demonstration of an on-chip quadplexer for passive optical network systems. Photon. Res., 9, 757-763(2021).
[34] H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, S.-I. Itabashi. Ultrasmall polarization splitter based on silicon wire waveguides. Opt. Express, 14, 12401-12408(2006).
[35] H. Zafar, R. Flores, R. Janeiro, A. Khilo, M. S. Dahlem, J. Viegas. High-extinction ratio polarization splitter based on an asymmetric directional coupler and on-chip polarizers on a silicon photonics platform. Opt. Express, 28, 22899-22907(2020).
[36] Y. Zhang, Y. He, J. Wu, X. Jiang, R. Liu, C. Qiu, X. Jiang, J. Yang, C. Tremblay, Y. Su. High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations. Opt. Express, 24, 6586-6593(2016).
[37] D. Vermeulen, S. Selvaraja, P. Verheyen, P. Absil, W. Bogaerts, D. V. Thourhout, G. Roelkens. Silicon-on-insulator polarization rotator based on a symmetry breaking silicon overlay. IEEE Photon. Technol. Lett., 24, 482-484(2012).
[38] H. Xu, Y. Shi. Ultra-broadband silicon polarization splitter-rotator based on the multi-mode waveguide. Opt. Express, 25, 18485-18491(2017).
[39] Y. Zhang, Q. Zhu, Y. He, Y. Su. Silicon polarization splitter and rotator with tolerance to width variations using a nonlinearly-tapered and partially-etched directional coupler. Optical Fiber Communication Conference (OFC), W1E.4(2019).
[40] H. Wu, Y. Tan, D. Dai. Ultra-broadband high-performance polarizing beam splitter on silicon. Opt. Express, 25, 6069-6075(2017).
[41] H. Xu, D. Dai, Y. Shi. Ultra-broadband and ultra-compact on-chip silicon polarization beam splitter by using hetero-anisotropic metamaterials. Laser Photon. Rev., 13, 1800349(2019).
[42] Y. Liu, H. Li, W. Chen, P. Wang, S. Dai, B. Zhang, J. Li, Y. Li, Q. Fu, T. Dai, H. Yu, J. Yang. Direct-binary-search-optimized compact silicon-based polarization beam splitter using a pixelated directional coupler. Opt. Commun., 484, 126670(2021).
[43] W. Chen, B. Zhang, P. Wang, S. Dai, W. Liang, H. Li, Q. Fu, J. Li, Y. Li, T. Dai, H. Yu, J. Yang. Ultra-compact and low-loss silicon polarization beam splitter using a particle-swarm-optimized counter-tapered coupler. Opt. Express, 28, 30701-30709(2020).
[44] C. Li, D. Dai. Compact polarization beam splitter for silicon photonic integrated circuits with a 340-nm-thick silicon core layer. Opt. Lett., 42, 4243-4246(2017).
[45] J. Zhang, M. Yu, G. Lo, D.-L. Kwong. Silicon waveguide-based mode-evolution polarization rotator. Proc. SPIE, 7719, 77190C(2010).
[46] L. Chen, C. R. Doerr, Y.-K. Chen. Compact polarization rotator on silicon for polarization-diversified circuits. Opt. Lett., 36, 469-471(2011).
[47] K. Goi, A. Oka, H. Kusaka, K. Ogawa, T.-Y. Liow, X. Tu, G.-Q. Lo, D.-L. Kwong. Low-loss partial rib polarization rotator consisting only of silicon core and silica cladding. Opt. Lett., 40, 1410-1413(2015).
[48] D. Chen, X. Xiao, L. Wang, W. Liu, Q. Yang, S. Yu. Highly efficient silicon optical polarization rotators based on mode order conversions. Opt. Lett., 41, 1070-1073(2016).
[49] Z. Wang, D. Dai. Ultrasmall Si-nanowire-based polarization rotator. J. Opt. Soc. Am. B, 25, 747-753(2008).
[50] M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Håkansson, P. Sanchis. CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section. IEEE Photon. Technol. Lett., 24, 2031-2034(2012).
[51] A. Xie, L. Zhou, J. Chen, X. Li. Efficient silicon polarization rotator based on mode-hybridization in a double-stair waveguide. Opt. Express, 23, 3960-3970(2015).
[52] H. Xu, Y. Shi. Subwavelength-grating-assisted silicon polarization rotator covering all optical communication bands. Opt. Express, 27, 5588-5597(2019).
[53] J. Chen, D. Gao. Ultra-compact polarization rotator based on mode coupling in a groove-like waveguide, assisted by subwavelength grating. Appl. Opt., 59, 5368-5376(2020).
[54] A. Majumder, B. Shen, R. Polson, R. Menon. Ultra-compact polarization rotation in integrated silicon photonics using digital metamaterials. Opt. Express, 25, 19721-19731(2017).
[55] W. Chang, S. Xu, M. Cheng, D. Liu, M. Zhang. Inverse design of a single-step-etched ultracompact silicon polarization rotator. Opt. Express, 28, 28343-28351(2020).
[56] D. Dai, J. E. Bowers. Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires. Opt. Express, 19, 10940-10949(2011).
[57] J. Wang, B. Niu, Z. Sheng, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, F. Gan. Novel ultra-broadband polarization splitter-rotator based on mode-evolution tapers and a mode-sorting asymmetric Y-junction. Opt. Express, 22, 13565-13571(2014).
[58] L. Liu, Y. Ding, K. Yvind, J. M. Hvam. Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits. Opt. Express, 19, 12646-12651(2011).
[59] Y. Ding, L. Liu, C. Peucheret, H. Ou. Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler. Opt. Express, 20, 20021-20027(2012).
[60] Y. Zhang, Y. He, X. Jiang, B. Liu, C. Qiu, Y. Su, R. A. Soref. Ultra-compact and highly efficient silicon polarization splitter and rotator. APL Photon., 1, 091304(2016).
[61] H. Guan, A. Novack, M. Streshinsky, R. Shi, Q. Fang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, M. Hochberg. CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler. Opt. Express, 22, 2489-2496(2014).
[62] K. Tan, Y. Huang, G.-Q. Lo, C. Yu, C. Lee. Ultra-broadband fabrication-tolerant polarization splitter and rotator. Optical Fiber Communication Conference (ACP), Th1G.7(2017).
[63] Y. Ding, H. Ou, C. Peucheret. Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process. Opt. Lett., 38, 1227-1229(2013).
[64] D. Chen, M. Liu, Y. Zhang, L. Wang, X. Hu, P. Feng, X. Xiao, S. Yu. C+L band polarization rotator-splitter based on a compact S-bend waveguide mode demultiplexer. Opt. Express, 29, 10949-10957(2021).
[65] L. Han, S. Liang, H. Zhu, L. Qiao, J. Xu, W. Wang. Two-mode de/multiplexer based on multimode interference couplers with a tilted joint as phase shifter. Opt. Lett., 40, 518-521(2015).
[66] D. González-Andrade, J. G. Wangüemert-Pérez, A. V. Velasco, A. Ortega-Moñux, A. Herrero-Bermello, I. Molina-Fernández, R. Halir, P. Cheben. Ultra-broadband mode converter and multiplexer based on sub-wavelength structures. IEEE Photon. J., 10, 2201010(2018).
[67] N. Riesen, J. D. Love. Design of mode-sorting asymmetric Y-junctions. Appl. Opt., 51, 2778-2783(2012).
[68] J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, R. M. Osgood. Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing. Opt. Lett., 38, 1854-1856(2013).
[69] D. Dai, J. Wang, Y. Shi. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Opt. Lett., 38, 1422-1424(2013).
[70] D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, H.-K. Tsang. 10-channel mode (de)multiplexer with dual polarizations. Laser Photon. Rev., 12, 1700109(2018).
[71] M. Yin, Q. Deng, Y. Li, X. Wang, H. Li. Compact and broadband mode multiplexer and demultiplexer based on asymmetric plasmonic-dielectric coupling. Appl. Opt., 53, 6175-6180(2014).
[72] Y. Liu, K. Xu, S. Wang, W. Shen, H. Xie, Y. Wang, S. Xiao, Y. Yao, J. Du, Z. He, Q. Song. Arbitrarily routed mode-division multiplexed photonic circuits for dense integration. Nat. Commun., 10, 3263(2019).
[73] T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, M. Koshiba. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J. Lightwave Technol., 30, 2421-2426(2012).
[74] D. Chack, S. Hassan, M. Qasim. Broadband and low crosstalk silicon on-chip mode converter and demultiplexer for mode division multiplexing. Appl. Opt., 59, 3652-3659(2020).
[75] Z. Wang, C. Yao, Y. Zhang, Y. Su. Compact silicon three-mode multiplexer by refractive-index manipulation on a multi-mode interferometer. Opt. Express, 29, 13899-13907(2021).
[76] Y. He, S. An, X. Li, Y. Huang, Y. Zhang, H. Chen, Y. Su. Record high-order mode-division-multiplexed transmission on chip using gradient-duty-cycle subwavelength gratings. Optical Fiber Communication Conference (OFC), F3A.2(2021).
[77] J. D. Love, N. Riesen. Single, few, and multimode Y-junctions. J. Lightwave Technol., 30, 304-309(2012).
[78] J. B. Driscoll, C. P. Chen, R. R. Grote, B. Souhan, J. I. Dadap, A. Stein, M. Lu, K. Bergman, R. M. Osgood. A 60 Gb/s MDM-WDM Si photonic link with <0.7 dB power penalty per channel. Opt. Express, 22, 18543-18555(2014).
[79] H.-C. Chung, K.-S. Lee, S.-Y. Tseng. Short and broadband silicon asymmetric Y-junction two-mode (de)multiplexer using fast quasiadiabatic dynamics. Opt. Express, 25, 13626-13634(2017).
[80] J. Wang, S. He, D. Dai. On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing. Laser Photon. Rev., 8, L18-L22(2014).
[81] J. Wang, P. Chen, S. Chen, Y. Shi, D. Dai. Improved 8-channel silicon mode demultiplexer with grating polarizers. Opt. Express, 22, 12799-12807(2014).
[82] J. Wang, Y. Xuan, M. Qi, H. Huang, Y. Li, M. Li, X. Chen, Z. Sheng, A. Wu, W. Li, X. Wang, S. Zou, F. Gan. Broadband and fabrication-tolerant on-chip scalable mode-division multiplexing based on mode-evolution counter-tapered couplers. Opt. Lett., 40, 1956-1959(2015).
[83] W. Chang, L. Lu, X. Ren, D. Li, Z. Pan, M. Cheng, D. Liu, M. Zhang. Ultra-compact mode (de)multiplexer based on subwavelength asymmetric Y-junction. Opt. Express, 26, 8162-8170(2018).
[84] L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, M. Lipson. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun., 5, 3069(2014).
[85] D. Dai, J. Wang, S. Chen, S. Wang, S. He. Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength- and mode-division-multiplexing. Laser Photon. Rev., 9, 339-344(2015).
[86] Y. Zhang, R. Zhang, Q. Zhu, Y. Yuan, Y. Su. Architecture and devices for silicon photonic switching in wavelength, polarization and mode. J. Lightwave Technol., 38, 215-225(2020).
[87] Y. Huang, Y. He, H. Chen, H. Huang, Y. Zhang, N. Ye, N. K. Fontaine, R. Ryf, Y. Song, Q. Zhang, Y. Su, M. Wang. On-chip mode-division multiplexing transmission with modal crosstalk mitigation employing low-coherence matched detection. J. Lightwave Technol., 39, 2008-2014(2021).
[88] Y. Su, Y. He, H. Chen, X. Li, G. Li. Perspective on mode-division multiplexing. Appl. Phys. Lett., 118, 200502(2021).
[89] Y. Tong, W. Zhou, X. Wu, H. K. Tsang. Efficient mode multiplexer for few-mode fibers using integrated silicon-on-insulator waveguide grating coupler. IEEE J. Quantum Electron., 56, 8400107(2019).
[90] D. Dai, M. Mao. Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits. Opt. Express, 23, 28376-28388(2015).
[91] J. Zhu, H. Huang, Y. Zhao, Y. Li, Z. Sheng, F. Gan. Efficient silicon integrated four-mode edge coupler for few-mode fiber coupling. Chin. Opt. Lett., 20, 011302(2022).
[92] O. A. Jimenez Gordillo, U. D. Dave, M. Lipson. One-to-one coupling higher order modes in a fiber to higher order modes in silicon waveguide. Conference on Lasers and Electro-Optics, SW3C.4(2021).
[93] W. Shen, J. Du, J. Xiong, L. Ma, Z. He. Silicon-integrated dual-mode fiber-to-chip edge coupler for 2 × 100 Gbps/lambda MDM optical interconnection. Opt. Express, 28, 33254-33262(2020).
[94] A. Rahim, A. Hermans, B. Wohlfeil, D. Petousi, B. Kuyken, D. Van Thourhout, R. Baets. Taking silicon photonics modulators to a higher performance level: state-of-the-art and a review of new technologies. Adv. Photon., 3, 024003(2021).
[95] N. C. Harris, Y. Ma, J. Mower, T. Baehr-Jones, D. Englund, M. Hochberg, C. Galland. Efficient, compact and low loss thermo-optic phase shifter in silicon. Opt. Express, 22, 10487-10493(2014).
[96] G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson. Silicon optical modulators. Nat. Photonics, 4, 518-526(2010).
[97] W. M. J. Green, M. J. Rooks, L. Sekaric, Y. A. Vlasov. Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. Opt. Express, 15, 17106-17113(2007).
[98] S. J. Spector, C. M. Sorace, M. W. Geis, M. E. Grein, J. U. Yoon, T. M. Lyszczarz, E. P. Ippen, F. X. Kärtner. Operation and optimization of silicon-diode-based optical modulators. IEEE J. Sel. Top. Quantum Electron., 16, 165-172(2010).
[99] S. Akiyama, T. Baba, M. Imai, M. Mori, T. Usuki. High-performance silicon modulator for integrated transceivers fabricated on 300-mm wafer. European Conference on Optical Communication (ECOC), 1-3(2014).
[100] M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, A. L. Lentine. Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator. IEEE J. Sel. Top. Quantum Electron., 16, 159-164(2010).
[101] S. Tanaka, T. Simoyama, T. Aoki, T. Mori, S. Sekiguchi, S. H. Jeong, T. Usuki, Y. Tanaka, K. Morito. Ultralow-power (1.59 mW/Gbps), 56-Gbps PAM4 operation of Si photonic transmitter integrating segmented PIN Mach–Zehnder modulator and 28-nm CMOS driver. J. Lightwave Technol., 36, 1275-1280(2018).
[102] Y. Sobu, T. Simoyama, S. Tanaka, Y. Tanaka, K. Morito. 70 Gbaud operation of all-silicon Mach–Zehnder modulator based on forward-biased PIN diodes and passive equalizer. 24th OptoElectronics and Communications Conference (OECC) and International Conference on Photonics in Switching and Computing (PSC), 1-3(2019).
[103] Y. Sobu, S. Tanaka, Y. Tanaka, Y. Akiyama, T. Hoshida. High-speed, multi-level operation of all-silicon segmented modulator for optical DAC transmitter. IEEE Photonics Conference (IPC), 1-2(2020).
[104] A. Liu, R. Jones, L. Liao, D. S. Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature, 427, 615-618(2004).
[105] M. Webster, P. Gothoskar, V. Patel, D. Piede, S. Anderson, R. Tummidi, D. Adams, C. Appel, P. Metz, S. Sunder, B. Dama, K. Shastri. An efficient MOS-capacitor based silicon modulator and CMOS drivers for optical transmitters. 11th International Conference on Group IV Photonics (GFP), 1-2(2014).
[106] M. Webster, C. Appel, P. Gothoskar, S. Sunder, B. Dama, K. Shastri. Silicon photonic modulator based on a MOS-capacitor and a CMOS driver. IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 1-4(2014).
[107] M. Webster, K. Lakshmikumar, C. Appel, C. Muzio, B. Dama, K. Shastri. Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers. Optical Fiber Communications Conference and Exhibition (OFC), W4H.3(2015).
[108] D. J. Thomson, W. Zhang, K. Debnath, B. Chen, K. Li, S. Liu, M. Ebert, J. D. Reynolds, F. Meng, A. Z. Khokhar, C. G. Littlejohns, J. Byers, M. K. Husain, F. Y. Gardes, S. Saito, G. T. Reed. High performance silicon optical modulators. International Conference on Transparent Optical Networks (ICTON), Tu.D5.5(2020).
[109] K. Debnath, D. J. Thomson, W. Zhang, A. Z. Khokhar, C. Littlejohns, J. Byers, L. Mastronard, M. K. Husain, K. Ibukuro, F. Y. Gardes, G. T. Reed, S. Saito. All-silicon carrier accumulation modulator based on a lateral metal-oxide-semiconductor capacitor. Photon. Res., 6, 373-379(2018).
[110] W. Zhang, K. Debnath, B. Chen, K. Li, S. Liu, M. Ebert, J. D. Reynolds, A. Z. Khokhar, C. Littlejohns, J. Byers, M. K. Husain, F. Y. Gardes, S. Saito, D. J. Thomson. High bandwidth capacitance efficient silicon MOS modulator. J. Lightwave Technol., 39, 201-207(2021).
[111] K. Goi, K. Ogawa, Y. T. Tan, V. Dixit, S. T. Lim, C. E. Png, T.-Y. Liow, X. Tu, G.-Q. Lo, D.-L. Kwong. Silicon Mach-Zehnder modulator using low-loss phase shifter with bottom PN junction formed by restricted-depth doping. IEICE Electron. Express, 10, 20130552(2013).
[112] J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, H. Rong. A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning. J. Lightwave Technol., 37, 110-115(2019).
[113] G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, S. S. Hsu. Recent breakthroughs in carrier depletion based silicon optical modulators. Nanophotonics, 3, 229-245(2014).
[114] Y. Maegami, G. Cong, M. Ohno, M. Okano, K. Itoh, N. Nishiyama, S. Arai, K. Yamada. High-efficiency silicon Mach-Zehnder modulator with vertical PN junction based on fabrication-friendly strip-loaded waveguide. International Conference on Group IV Photonics (GFP), 21-22(2017).
[115] G. Zhou, L. Zhou, Y. Zhou, Y. Zhong, S. Liu, Y. Guo, L. Liu, J. Chen. Silicon Mach-Zehnder modulator using a highly-efficient L-shape PN junction. Proc. SPIE, 10964, 1096419(2018).
[116] Z. Yong, W. D. Sacher, Y. Huang, J. C. Mikkelsen, Y. Yang, X. Luo, P. Dumais, D. Goodwill, H. Bahrami, P. G.-Q. Lo, E. Bernier, J. K. S. Poon. U-shaped PN junctions for efficient silicon Mach-Zehnder and microring modulators in the O-band. Opt. Express, 25, 8425-8439(2017).
[117] X. Xiao, H. Xu, X. Li, Y. Hu, K. Xiong, Z. Li, T. Chu, Y. Yu, J. Yu. 25 Gbit/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions. Opt. Express, 20, 2507-2515(2012).
[118] E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, M. R. Watts. An ultralow power athermal silicon modulator. Nat. Commun., 5, 4008(2014).
[119] X. Tu, T.-Y. Liow, J. Song, M. Yu, G. Q. Lo. Fabrication of low loss and high speed silicon optical modulator using doping compensation method. Opt. Express, 19, 18029-18035(2011).
[120] A. Brimont, A. M. Gutierrez, M. Aamer, D. J. Thomson, F. Y. Gardes, J.-M. Fedeli, G. T. Reed, J. Martí, P. Sanchis. Slow-light-enhanced silicon optical modulators under low-drive-voltage operation. IEEE Photon. J., 4, 1306-1315(2012).
[121] P. Xia, H. Yu, Q. Zhang, X. Wang, Z. Fu, Q. Huang, X. Jiang, J. Yang. Silicon DC Kerr modulator enhanced by slow light for 112 Gbit/s PAM4. Asia Communications and Photonics Conference (ACP), T2I.1(2021).
[122] C. Han, M. Jin, Y. Tao, B. Shen, H. Shu, X. Wang. Ultra-compact silicon modulator with 110 GHz bandwidth. Optical Fiber Communications Conference and Exhibition (OFC), Th4C.5(2022).
[123] D. Patel, V. Veerasubramanian, S. Ghosh, A. Samani, Q. Zhong, D. V. Plant. High-speed compact silicon photonic Michelson interferometric modulator. Opt. Express, 22, 26788-26802(2014).
[124] X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, Y. Yu. Highly efficient silicon Michelson interferometer modulators. IEEE Photon. Technol. Lett., 25, 407-409(2013).
[125] M. Wang, L. Zhou, H. Zhu, Y. Zhou, Y. Zhong, J. Chen. Low-loss high-extinction-ratio single-drive push-pull silicon Michelson interferometric modulator. Chin. Opt. Lett., 15, 042501(2017).
[126] Y. Zhou, L. Zhou, H. Zhu, C. Wong, Y. Wen, L. Liu, X. Li, J. Chen. Modeling and optimization of a single-drive push–pull silicon Mach–Zehnder modulator. Photon. Res., 4, 153-161(2016).
[127] H. Yu, W. Bogaerts. An equivalent circuit model of the traveling wave electrode for carrier-depletion-based silicon optical modulators. J. Lightwave Technol., 30, 1602-1609(2012).
[128] H. Bahrami, H. Sepehrian, C. S. Park, L. A. Rusch, W. Shi. Time-domain large-signal modeling of traveling-wave modulators on SOI. J. Lightwave Technol., 34, 2812-2823(2016).
[129] D. Patel, S. Ghosh, M. Chagnon, A. Samani, V. Veerasubramanian, M. Osman, D. V. Plant. Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator. Opt. Express, 23, 14263-14287(2015).
[130] X. Wang, W. Shen, W. Li, Y. Liu, Y. Yao, J. Du, Q. Song, K. Xu. High-speed silicon photonic Mach–Zehnder modulator at 2 μm. Photon. Res., 9, 535-540(2021).
[131] M. S. Alam, X. Li, M. Jacques, Z. Xing, A. Samani, E. El-Fiky, P.-C. Koh, D. V. Plant. Net 220 Gbps/λ IM/DD transmission in O-band and C-band with silicon photonic traveling-wave MZM. J. Lightwave Technol., 39, 4270-4278(2021).
[132] J. Zhou, J. Wang, L. Zhu, Q. Zhang. High baud rate all-silicon photonics carrier depletion modulators. J. Lightwave Technol., 38, 272-281(2019).
[133] P. Dong, L. Chen, Y.-K. Chen. High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators. Opt. Express, 20, 6163-6169(2012).
[134] L. Chen, C. R. Doerr, P. Dong, Y.-K. Chen. Monolithic silicon chip with 10 modulator channels at 25 Gbps and 100-GHz spacing. Opt. Express, 19, B946-B951(2011).
[135] X. Xiao, M. Li, Z. Li, L. Wang, Q. Yang, S. Yu. Substrate removed silicon Mach-Zehnder modulator for high baud rate optical intensity modulations. Optical Fiber Communications Conference and Exhibition (OFC), Th4H.5(2016).
[136] M. Li, L. Wang, X. Li, X. Xiao, S. Yu. Silicon intensity Mach–Zehnder modulator for single lane 100 Gb/s applications. Photon. Res., 6, 109-116(2018).
[137] K. Li, S. Liu, D. J. Thomson, W. Zhang, X. Yan, F. Meng, C. G. Littlejohns, H. Du, M. Banakar, M. Ebert, W. Cao, D. Tran, B. Chen, A. Shakoor, P. Petropoulos, G. T. Reed. Electronic–photonic convergence for silicon photonics transmitters beyond 100 Gbps on–off keying. Optica, 7, 1514-1516(2020).
[138] Q. Liao, M. Li, Z. Zhang, J. Liu, N. Wu, X. Xiao, N. Qi. A 50 Gb/s high-efficiency Si-photonic transmitter with lump-segmented MZM and integrated PAM4 CDR. IEEE Custom Integrated Circuits Conference (CICC), 1-2(2021).
[139] A. Giuglea, G. Belfiore, M. Khafaji, R. Henker, D. Petousi, G. Winzer, L. Zimmermann, F. Ellinger. Comparison of segmented and traveling-wave electro-optical transmitters based on silicon photonics Mach-Zehnder modulators. Photonics in Switching and Computing (PSC), 1-3(2018).
[140] S. Fathololoumi, K. Nguyen, H. Mahalingam, M. Sakib, Z. Li, C. Seibert, M. Montazeri, J. Chen, J. K. Doylend, H. Jayatilleka, C. Jan, J. Heck, R. Venables, H. Frish, R. A. Defrees, R. S. Appleton, S. Hollingsworth, S. McCargar, R. Jones, D. Zhu, Y. Akulova, L. Liao. 1.6 Tbps silicon photonics integrated circuit for co-packaged optical-IO switch applications. Optical Fiber Communications Conference and Exhibition (OFC), T3H.1(2020).
[141] Q. Xu, B. Schmidt, S. Pradhan, M. Lipson. Micrometre-scale silicon electro-optic modulator. Nature, 435, 325-327(2005).
[142] P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, M. Asghari. Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator. Opt. Express, 17, 22484-22490(2009).
[143] G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, J. E. Cunningham. Ring resonator modulators in silicon for interchip photonic links. IEEE J. Sel. Top. Quantum Electron., 19, 95-113(2013).
[144] J. Muller, F. Merget, S. S. Azadeh, J. Hauck, S. R. Garcıa, B. Shen, J. Witzens. Optical peaking enhancement in high-speed ring modulators. Sci. Rep., 4, 6310(2014).
[145] P. Liao, M. Sakib, D. Huang, R. Kumar, X. Wu, C. Ma, G.-L. Su, H. Rong. A 260 Gb/s/λ PDM link with silicon photonic dual-polarization transmitter and polarization demultiplexer. European Conference and Exhibition on Optical Communications (ECOC), 1-4(2021).
[146] Y. Zhang, H. Zhang, M. Li, P. Feng, L. Wang, X. Xiao, S. Yu. 200 Gbit/s optical PAM4 modulation based on silicon microring modulator. European Conference and Exhibition on Optical Communications (ECOC), Th3A-1(2020).
[147] M. Sakib, P. Liao, C. Ma, R. Kumar, D. Huang, G.-L. Su, X. Wu, S. Fathololoumi, H. Rong. A high-speed micro-ring modulator for next generation energy-efficient optical networks beyond 100 Gbaud. Conference on Lasers and Electro-Optics (CLEO), SF1C.3(2021).
[148] D. Zheng, C. Qiu, H. Zhang, X. Jiang, Y. Su. Demonstration of a push-pull silicon dual-ring modulator with enhanced optical modulation amplitude. J. Lightwave Technol., 38, 3694-3700(2020).
[149] S. Pitris, M. Moralis-Pegios, T. Alexoudi, Y. Ban, P. D. Heyn, J. Van Campenhout, N. Pleros. A 4 × 40 Gb/s O-band WDM silicon photonic transmitter based on micro-ring modulators. Optical Fiber Communications Conference and Exhibition (OFC), W3E.2(2019).
[150] H. Gevorgyan, A. Khilo, M. T. Wade, V. M. Stojanović, M. A. Popoví. MOSCAP ring modulator with 1.5 μm radius, 8.5 THz FSR and 30 GHz/V shift efficiency in a 45 nm SOI CMOS process. Optical Fiber Communications Conference and Exhibition (OFC), Th5A.3(2021).
[151] C.-M. Chang, G. de Valicourt, S. Chandrasekhar, P. Dong. Differential microring binary phase-shift keying modulators. European Conference and Exhibition on Optical Communications (ECOC), 1-3(2016).
[152] P. Dong, C. Xie, L. Chen, N. K. Fontaine, Y.-K. Chen. Experimental demonstration of microring quadrature phase-shift keying modulators. Opt. Lett., 37, 1178-1180(2012).
[153] P. Dong, C. Xie, L. L. Buhl, Y.-K. Chen. Silicon microring modulators for advanced modulation formats. Optical Fiber Communications Conference and Exhibition (OFC), OW4J.2(2013).
[154] X. Wu, B. Guan, Q. Xu, C. Doerr, L. Chen. Low-chirp push-pull dual-ring modulator with 144 Gb/s PAM-4 data transmission. Opt. Express, 28, 26492-26498(2020).
[155] R. Li, D. Patel, E. El-Fiky, A. Samani, Z. Xing, M. Morsy-Osman, D. V. Plant. High-speed low-chirp PAM-4 transmission based on push-pull silicon photonic microring modulators. Opt. Express, 25, 13222-13229(2017).
[156] Q. Xu, B. Schmidt, J. Shakya, M. Lipson. Cascaded silicon micro-ring modulators for WDM optical interconnection. Opt. Express, 14, 9431-9436(2006).
[157] H. Li, Z. Xuan, R. Kumar, M. Sakib, J. Sharma, C.-M. Hsu, C. Ma, H. Rong, G. Balamurugan, J. Jaussi. A 4 × 50 Gb/s all-silicon ring-based WDM transceiver with CMOS IC. European Conference on Optical Communication (ECOC), 1-3(2021).
[158] T. Tanabe, K. Nishiguchi, E. Kuramochi, M. Notomi. Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity. Opt. Express, 17, 22505-22513(2009).
[159] A. Shakoor, K. Nozaki, E. Kuramochi, K. Nishiguchi, A. Shinya, M. Notomi. Compact 1D-silicon photonic crystal electro- optic modulator operating with ultra-low switching voltage and energy. Opt. Express, 22, 28623-28634(2014).
[160] K. A. Qubaisi, D. Onural, H. Gevorgyan, M. A. Popoví. Photonic crystal modulator in a CMOS foundry platform. Optical Fiber Communications Conference and Exhibition (OFC), F4B.1(2021).
[161] Y. Zhang, D. Wu, L. Wang, X. Xiao. 70 Gbit/s optical NRZ modulation based on silicon photonic crystal modulator. Asia Communications and Photonics Conference (ACP), T2D.3(2021).
[162] H. Li, G. Balamurugan, T. Kim, M. N. Sakib, R. Kumar, H. Rong, J. Jaussi, B. Casper. A 3-D-integrated silicon photonic microring-based 112-Gb/s PAM-4 transmitter with nonlinear equalization and thermal control. IEEE J. Solid-State Circuits, 56, 19-29(2021).
[163] Y. Zhang, Y. Shi. Temperature insensitive lower-index-mode photonic crystal nanobeam cavity. Opt. Lett., 40, 264-267(2015).
[164] F. Zhang, Y. Zhu, F. Yang, L. Zhang, X. Ruan, Y. Li, Z. Chen. Up to single lane 200G optical interconnects with silicon photonic modulator. Optical Fiber Communications Conference and Exhibition (OFC), Th4A.6(2019).
[165] S. Zhalehpour, M. Guo, J. Lin, Z. Zhang, Y. Qiao, W. Shi, L. A. Rusch. System optimization of an all-silicon IQ modulator: achieving 100 Gbaud dual polarization 32QAM. J. Lightwave Technol., 38, 256-264(2019).
[166] J. Zhou, J. Wang, L. Zhu, Q. Zhang. Silicon photonics for 100 Gbaud. J. Lightwave Technol., 39, 857-867(2020).
[167] M. S. Alam, X. Li, M. Jacques, E. Berikaa, P.-C. Koh, D. V. Plant. Net 300 Gbps/λ transmission over 2 km of SMF with a silicon photonic Mach-Zehnder modulator. IEEE Photon. Technol. Lett., 33, 1391-1394(2021).
[168] F. Hu, Y. Zhang, H. Zhang, Z. Li, S. Xing, J. Shi, J. Zhang, X. Xiao, N. Chi, Z. He, S. Yu. Beyond 300 Gbps silicon microring modulator with AI acceleration(2021).
[169] X. Wu, Z. Hu, Y. Tong, D. Huang, C.-K. Chan, J. Bowers, H. K. Tsang. 256 Gb/s PAM4 signal transmission with microring modulator based monolithic dual-polarization silicon transmitter. Asia Communications and Photonics Conference (ACP), T2D.3(2019).
[170] F. Zhang, L. Zhang, X. Ruan, F. Yang, H. Ming, Y. Li. High baud rate transmission with silicon photonic modulators. IEEE J. Sel. Top. Quantum Electron., 27, 8300709(2021).
[171] A. Boes, B. Corcoran, L. Chang, J. Bowers, A. Mitchell. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photon. Rev., 12, 1700256(2018).
[172] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Lončar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).
[173] P. Kharel, C. Reimer, K. Luke, L. He, M. Zhang. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica, 8, 357-363(2021).
[174] B. Pan, J. Hu, Y. Huang, L. Song, J. Wang, P. Chen, Z. Yu, L. Liu, D. Dai. Demonstration of high-speed thin-film lithium-niobate-on-insulator optical modulators at the 2-μm wavelength. Opt. Express, 29, 17710-17717(2021).
[175] L. Chen, Q. Xu, M. G. Wood, R. M. Reano. Hybrid silicon and lithium niobate electro-optical ring modulator. Optica, 1, 112-118(2014).
[176] P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, S. Mookherjea. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Opt. Express, 26, 23728-23739(2018).
[177] M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, X. Cai. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s-1 and beyond. Nat. Photonics, 13, 359-364(2019).
[178] C. Zhang, D. Huang, J. E. Bowers, P. Pintus, P. Morton, T. Mizumoto, Y. Shoji. Dynamically reconfigurable integrated optical circulators. Optica, 4, 23-30(2017).
[179] N. Margalit, C. Xiang, S. M. Bowers, A. Bjorlin, R. Blum, J. E. Bowers. Perspective on the future of silicon photonics and electronics. Appl. Phys. Lett., 118, 220501(2021).
[181] R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, J. E. Bowers. Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers. IEEE Nanotechnol. Mag., 13, 17-26(2019).
[182] J. Wang, F. Sciarrino, A. Laing, M. G. Thompson. Integrated photonic quantum technologies. Nat. Photonics, 14, 273-284(2019).
[183] B. J. Shastri, A. N. Tait, T. Ferreira de Lima, W. H. P. Pernice, H. Bhaskaran, C. D. Wright, P. R. Prucnal. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics, 15, 102-114(2021).
[184] R. Won. Integrating silicon photonics. Nat. Photonics, 4, 498-499(2010).
[185] D. Liang, J. E. Bowers, D. Liang, J. E. Bowers. Recent progress in heterogeneous III–V-on-silicon photonic integration. Light Adv. Manuf., 2, 59-83(2021).
[186] C. Xiang, W. Jin, D. Huang, M. A. Tran, J. Guo, Y. Wan, W. Xie, G. Kurczveil, A. Netherton, D. Liang, H. Rong, J. E. Bowers. High-performance silicon photonics using heterogeneous integration. IEEE J. Sel. Top. Quantum Electron., 28, 8200515(2021).
[187] G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, J. Bowers. III–V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photon. Rev., 4, 751-779(2010).
[188] J. M. Ramirez, H. Elfaiki, T. Verolet, C. Besancon, A. Gallet, D. Néel, K. Hassan, S. Olivier, C. Jany, S. Malhouitre, K. Gradkowski, P. E. Morrissey, P. O’Brien, C. Caillaud, N. Vaissière, J. Decobert, S. Lei, R. Enright, A. Shen, M. Achouche. III–V-on-silicon integration: from hybrid devices to heterogeneous photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron., 26, 6100213(2020).
[189] T. K. Shinji Matsuo. Low-operating-energy directly modulated lasers for shortdistance optical interconnects. Adv. Opt. Photon., 10, 567-643(2018).
[190] S. J. Zhang, Y. Liu, R. G. Lu, B. Sun, L. S. Yan. Heterogeneous III–V silicon photonic integration: components and characterization. Front. Inf. Technol. Electron. Eng., 20, 472-480(2019).
[191] S. Fathpour. Emerging heterogeneous integrated photonic platforms on silicon. Nanophotonics, 4, 143-164(2015).
[192] M. A. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, J. E. Bowers. Ultra-low-loss silicon waveguides for heterogeneously integrated silicon III–V photonics. Appl. Sci., 8, 1139(2018).
[193] W. Jin, Q. F. Yang, L. Chang, B. Shen, H. Wang, M. A. Leal, L. Wu, M. Gao, A. Feshali, M. Paniccia, K. J. Vahala, J. E. Bowers. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics, 15, 346-353(2021).
[194] C. T. Santis, Y. Vilenchik, A. Yariv, N. Satyan, G. Rakuljic. Sub-kHz quantum linewidth semiconductor laser on silicon chip. CLEO: Science and Innovations, JTh5A.7(2015).
[195] M. A. Tran, D. Huang, J. Guo, T. Komljenovic, P. A. Morton, J. E. Bowers. Ring-resonator based widely-tunable narrow-linewidth Si/InP integrated lasers. IEEE J. Sel. Top. Quantum Electron., 26, 1500514(2019).
[196] C. Xiang, W. Jin, J. Guo, J. D. Peters, M. Kennedy, J. Selvidge, P. A. Morton, J. E. Bowers. A narrow-linewidth III–V/Si/Si3N4 laser using multilayer heterogeneous integration. Optica, 7, 20-21(2019).
[197] P. A. Morton, M. J. Morton. High-power, ultra-low noise hybrid lasers for microwave photonics and optical sensing. J. Lightwave Technol., 36, 5048-5057(2018).
[198] C. Zhang, H. Park, M. A. Tran, T. Komljenovic. Heterogeneous silicon nitride photonics. Optica, 7, 336-337(2020).
[199] A. Spott, C. D. Merritt, C. S. Kim, D. Botez, E. J. Stanton, I. Vurgaftman, J. Kirch, J. R. Meyer, J. E. Bowers, J. Peters, L. J. Mawst, M. L. Davenport, W. W. Bewley. Quantum cascade laser on silicon. Optica, 3, 545-551(2016).
[200] Y. Wan, C. Xiang, J. Guo, R. Koscica, M. Kennedy, J. Selvidge, Z. Zhang, L. Chang, W. Xie, D. Huang, A. C. Gossard, J. E. Bowers. High speed evanescent quantum-dot lasers on Si. Laser Photon. Rev., 15, 2100057(2021).
[201] T. Kamei, T. Kamikawa, M. Araki, S. P. DenBaars, S. Nakamura, J. E. Bowers. Research toward a heterogeneously integrated InGaN laser on silicon. Phys. Status solidi, 217, 1900770(2020).
[202] A. Malik, A. Spott, E. J. Stanton, J. D. Peters, J. D. Kirch, L. J. Mawst, D. Botez, J. R. Meyer, J. E. Bowers. Integration of mid-infrared light sources on silicon-based waveguide platforms in 3.5–4.7 μm wavelength range. IEEE J. Sel. Top. Quantum Electron., 25, 1502809(2019).
[203] C. Shang, Y. Wan, J. Selvidge, E. Hughes, R. Herrick, K. Mukherjee, J. Duan, F. Grillot, W. W. Chow, J. E. Bowers. Perspectives on advances in quantum dot lasers and integration with Si photonic integrated circuits. ACS Photon., 8, 2555-2566(2021).
[204] Y. Wan, J. Norman, S. Liu, A. Liu, J. E. Bowers. Quantum dot lasers and amplifiers on silicon: recent advances and future developments. IEEE Nanotechnol. Mag., 15, 8-22(2021).
[205] S. Hepp, M. Jetter, S. L. Portalupi, P. Michler. Semiconductor quantum dots for integrated quantum photonics. Adv. Quantum Technol., 2, 1900020(2019).
[206] J. C. Norman, D. Jung, Y. Wan, J. E. Bowers. Perspective: the future of quantum dot photonic integrated circuits. APL Photon., 3, 030901(2018).
[207] C. Shang, E. Hughes, Y. Wan, M. Dumont, R. Koscica, J. Selvidge, R. Herrick, A. C. Gossard, K. Mukherjee, J. E. Bowers. High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters. Optica, 8, 749-754(2021).
[208] G. Kurczveil, D. Liang, M. Fiorentino, R. G. Beausoleil. Robust hybrid quantum dot laser for integrated silicon photonics. Opt. Express, 24, 16167-16174(2016).
[209] S. Uvin, S. Kumari, A. De Groote, S. Verstuyft, G. Lepage, P. Verheyen, J. Van Campenhout, G. Morthier, D. Van Thourhout, G. Roelkens. 1.3 μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding. Opt. Express, 26, 18302-18309(2018).
[210] D. Liang, S. Srinivasan, A. Descos, C. Zhang, G. Kurczveil, Z. Huang, R. Beausoleil. High-performance quantum-dot distributed feedback laser on silicon for high-speed modulations. Optica, 8, 591-593(2021).
[211] A. Malik, J. Guo, M. A. Tran, G. Kurczveil, D. Liang, J. E. Bowers. Widely tunable, heterogeneously integrated quantum-dot O-band lasers on silicon. Photon. Res., 8, 1551-1557(2020).
[212] M. Osinski, J. Buus. Linewidth broadening factor in semiconductor lasers–An overview. IEEE J. Quantum Electron., 23, 9-29(1987).
[213] Y. Wan, S. Zhang, J. C. Norman, M. J. Kennedy, W. He, Y. Tong, C. Shang, J. J. He, H. K. Tsang, A. C. Gossard, J. E. Bowers. Directly modulated single-mode tunable quantum dot lasers at 1.3 μm. Laser Photon. Rev., 14, 1900348(2020).
[214] Y. Ding, Z. Lv, Z. Zhang, H. Yuan, T. Yang. Single longitudinal mode GaAs-based quantum dot laser with refractive index perturbation. Appl. Opt., 59, 1648-1653(2020).
[215] J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, F. Grillot. 1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon. IEEE Photon. Technol. Lett., 31, 345-348(2019).
[216] C. Shang, J. Selvidge, E. Hughes, J. C. Norman, A. A. Taylor, A. C. Gossard, K. Mukherjee, J. E. Bowers. A pathway to thin GaAs virtual substrate on on-axis Si(001) with ultralow threading dislocation density. Phys. Status Solidi, 218, 2000402(2021).
[217] S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, H. Liu. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photonics, 10, 307-311(2016).
[218] T. Zhou, M. Tang, G. Xiang, B. Xiang, S. Hark, M. Martin, T. Baron, S. Pan, J. S. Park, Z. Liu, S. Chen, Z. Zhang, H. Liu. Continuous-wave quantum dot photonic crystal lasers grown on on-axis Si (001). Nat. Commun., 11, 1(2020).
[219] Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, J. E. Bowers. 1.3 μm submilliamp threshold quantum dot micro-lasers on Si. Optica, 4, 940-944(2017).
[220] S. Liu, X. Wu, D. Jung, J. C. Norman, M. J. Kennedy, H. K. Tsang, A. C. Gossard, J. E. Bowers. High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 41 Tbit/s transmission capacity. Optica, 6, 128-134(2019).
[221] Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, M. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau, J. E. Bowers. Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates. Opt. Express, 25, 27715-27723(2017).
[222] S. Liu, J. Norman, M. Dumont, D. Jung, A. Torres, A. C. C. Gossard, J. E. E. Bowers, S. Liu, A. Torres, A. C. C. Gossard, J. E. E. Bowers, S. Liu, D. Jung, A. C. C. Gossard, J. E. E. Bowers, J. Norman, M. Dumont, A. C. C. Gossard, J. E. E. Bowers, D. Jung. High-performance O-band quantum-dot semiconductor optical amplifiers directly grown on a CMOS compatible silicon substrate. ACS Photon., 6, 2523-2529(2019).
[223] Y. Wan, J. C. Norman, Y. Tong, M. J. Kennedy, W. He, J. Selvidge, C. Shang, M. Dumont, A. Malik, H. K. Tsang, A. C. Gossard, J. E. Bowers. 1.3 μm quantum dot-distributed feedback lasers directly grown on (001) Si. Laser Photon. Rev., 14, 2000037(2020).
[224] Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, W. Guo, B. Kunert, A. Dries Van Thourhout, D. Van Thourhout. Optical pumped InGaAs GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer. Optica, 4, 1468-1473(2017).
[225] Y. Y. Han, Z. Yan, W. K. Ng, Y. Xue, K. S. Wong, K. M. Lau. Bufferless 1.5 μm III–V lasers grown on Si-photonics 220 nm silicon-on-insulator platforms. Optica, 7, 148-153(2020).
[226] L. Chen, M. Lipson. Ultra-low capacitance and high speed germanium photodetectors on silicon. Opt. Express, 17, 7901-7906(2009).
[227] G. Masini, S. Sahni, G. Capellini, J. Witzens, C. Gunn. High-speed near infrared optical receivers based on Ge waveguide photodetectors integrated in a CMOS process. Adv. Opt. Technol., 2008, 196572(2008).
[228] J. Joo, S. Kim, I. G. Kim, K. S. Jang, G. Kim. High-sensitivity 10 Gbps Ge-on-Si photoreceiver operating at lambda similar to 1.55 μm. Opt. Express, 18, 16474-16479(2010).
[229] D. Ahn, C. Y. Hong, J. F. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, F. X. Kartner. High performance, waveguide integrated Ge photodetectors. Opt. Express, 15, 3916-3921(2007).
[230] D. Ahn, L. C. Kimerling, J. Michel. Efficient evanescent wave coupling conditions for waveguide-integrated thin-film Si/Ge photodetectors on silicon-on-insulator/germanium-on-insulator substrates. J. Appl. Phys., 110, 083115(2011).
[231] L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, J. M. Fedeli. Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon. Opt. Express, 20, 1096-1101(2012).
[232] D. Benedikovic, L. Virot, G. Aubin, J. M. Hartmann, F. Amar, B. Szelag, X. Le Roux, C. Alonso-Ramos, P. Crozat, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, J. M. Fedeli, C. Kopp, L. Vivien. Comprehensive study on chip-integrated germanium pin photodetectors for energy-efficient silicon interconnects. IEEE J. Quantum Electron., 56, 8400409(2020).
[233] A. Novack, M. Gould, Y. Yang, Z. Xuan, M. Streshinsky, Y. Liu, G. Capellini, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones. Germanium photodetector with 60 GHz bandwidth using inductive gain peaking. Opt. Express, 21, 28387-28393(2013).
[234] N. A. DiLello, D. K. Johnstone, J. L. Hoyt. Characterization of dark current in Ge-on-Si photodiodes. J. Appl. Phys., 112, 054506(2012).
[235] M. Currie, S. Samavedam, T. Langdo, C. Leitz, E. Fitzgerald. Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing. Appl. Phys. Lett., 72, 1718-1720(1998).
[236] M. Rouvière, L. Vivien, X. Le Roux, J. Mangeney, P. Crozat, C. Hoarau, E. Cassan, D. Pascal, S. Laval, J.-M. Fédéli. Ultrahigh speed germanium-on-silicon-on-insulator photodetectors for 1.31 and 1.55 μm operation. Appl. Phys. Lett., 87, 231109(2005).
[237] H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, L. C. Kimerling. High-quality Ge epilayers on Si with low threading-dislocation densities. Appl. Phys. Lett., 75, 2909-2911(1999).
[238] M. Beals, J. Michel, J. Liu, D. Ahn, D. Sparacin, R. Sun, C. Hong, L. Kimerling, A. Pomerene, D. Carothers. Process flow innovations for photonic device integration in CMOS. Proc. SPIE, 6898, 689804(2008).
[239] J. Osmond, G. Isella, D. Chrastina, R. Kaufmann, M. Acciarri, H. Von Känel. Ultralow dark current Ge/Si (100) photodiodes with low thermal budget. Appl. Phys. Lett., 94, 201106(2009).
[240] M. Jutzi, M. Berroth, G. Wohl, M. Oehme, E. Kasper. Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth. IEEE Photon. Technol. Lett., 17, 1510-1512(2005).
[241] M. Morse, O. Dosunmu, G. Sarid, Y. Chetrit. Performance of Ge-on-Si pin photodetectors for standard receiver modules. IEEE Photon. Technol. Lett., 18, 2442-2444(2006).
[242] M. J. Byrd, E. Timurdogan, Z. Su, C. V. Poulton, N. M. Fahrenkopf, G. Leake, D. D. Coolbaugh, M. R. Watts. Mode-evolution-based coupler for high saturation power Ge-on-Si photodetectors. Opt. Lett., 42, 851-854(2017).
[243] H. Chen, P. Verheyen, P. De Heyn, G. Lepage, J. De Coster, S. Balakrishnan, P. Absil, W. Yao, L. Shen, G. Roelkens. –1 V bias 67 GHz bandwidth Si-contacted germanium waveguide pin photodetector for optical links at 56 Gbps and beyond. Opt. Express, 24, 4622-4631(2016).
[244] C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, P. S. Davids. Ultra compact 45 GHz CMOS compatible germanium waveguide photodiode with low dark current. Opt. Express, 19, 24897-24904(2011).
[245] M. Huang, S. Li, P. Cai, G. Hou, T.-I. Su, W. Chen, C.-Y. Hong, D. Pan. Germanium on silicon avalanche photodiode. IEEE J. Sel. Top. Quantum Electron., 24, 3800911(2017).
[246] G. Chen, Y. Yu, S. Deng, L. Liu, X. Zhang. Bandwidth improvement for germanium photodetector using wire bonding technology. Opt. Express, 23, 25700-25706(2015).
[247] M. M. P. Fard, G. Cowan, O. Liboiron-Ladouceur. Responsivity optimization of a high-speed germanium-on-silicon photodetector. Opt. Express, 24, 27738-27752(2016).
[248] L. Virot, D. Benedikovic, B. Szelag, C. Alonso-Ramos, B. Karakus, J.-M. Hartmann, X. Le Roux, P. Crozat, E. Cassan, D. Marris-Morini. Integrated waveguide PIN photodiodes exploiting lateral Si/Ge/Si heterojunction. Opt. Express, 25, 19487-19496(2017).
[249] G. Chen, Y. Yu, X. Xiao, X. Zhang. High speed and high power polarization insensitive germanium photodetector with lumped structure. Opt. Express, 24, 10030-10039(2016).
[250] D. Zhou, G. Chen, S. Fu, Y. Zuo, Y. Yu. Germanium photodetector with distributed absorption regions. Opt. Express, 28, 19797-19807(2020).
[251] Z. Jiang, Y. Yu, Y. Wang, D. Zhou, W. Deng, X. Zhang. High-power Si-Ge photodiode assisted by doping regulation. Opt. Express, 29, 7389-7397(2021).
[252] Y. Zuo, Y. Yu, Y. Zhang, D. Zhou, X. Zhang. Integrated high-power germanium photodetectors assisted by light field manipulation. Opt. Lett., 44, 3338-3341(2019).
[253] D. Benedikovic, L. Virot, G. Aubin, F. Amar, B. Szelag, B. Karakus, J.-M. Hartmann, C. Alonso-Ramos, X. Le Roux, P. Crozat. 25 Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures. Photon. Res., 7, 437-444(2019).
[254] X. Hu, D. Wu, H. Zhang, W. Li, D. Chen, L. Wang, X. Xiao, S. Yu. High-speed lateral PIN germanium photodetector with 4-directional light input. Opt. Express, 28, 38343-38354(2020).
[255] J. Cui, Z. Zhou. High-performance Ge-on-Si photodetector with optimized DBR location. Opt. Lett., 42, 5141-5144(2017).
[256] B. Wang, Z. Huang, Y. Yuan, D. Liang, X. Zeng, M. Fiorentino, R. G. Beausoleil. 64 Gb/s low-voltage waveguide SiGe avalanche photodiodes with distributed Bragg reflectors. Photon. Res., 8, 1118-1123(2020).
[257] Y. Yuan, Z. Huang, X. Zeng, D. Liang, W. V. Sorin, M. Fiorentino, R. Beausoleil. High responsivity Si-Ge waveguide avalanche photodiodes enhanced by loop reflector. IEEE J. Sel. Top. Quantum Electron., 28, 3800508(2021).
[258] L. Alloatti, R. J. Ram. Resonance-enhanced waveguide-coupled silicon-germanium detector. Appl. Phys. Lett., 108, 071105(2016).
[259] C.-H. Lin, D.-W. Huang, T.-T. Shih, H.-C. Kuo, S.-W. Chang. Increasing responsivity-bandwidth margin of germanium waveguide photodetector with simple corner reflector. Opt. Express, 29, 10364-10373(2021).
[260] J.-M. Lee, M. Kim, W.-Y. Choi. Series resistance influence on performance of waveguide-type germanium photodetectors on silicon. Chin. Opt. Lett., 15, 100401(2017).
[261] Y. Shi, D. Zhou, Y. Yu, X. Zhang. 80 GHz germanium waveguide photodiode enabled by parasitic parameter engineering. Photon. Res., 9, 605-609(2021).
[262] S. Lischke, D. Knoll, C. Mai, L. Zimmermann, A. Peczek, M. Kroh, A. Trusch, E. Krune, K. Voigt, A. Mai. High bandwidth, high responsivity waveguide-coupled germanium pin photodiode. Opt. Express, 23, 27213-27220(2015).
[263] S. Lischke, A. Peczek, J. Morgan, K. Sun, D. Steckler, Y. Yamamoto, F. Korndörfer, C. Mai, S. Marschmeyer, M. Fraschke. Ultra-fast germanium photodiode with 3-dB bandwidth of 265 GHz. Nat. Photonics, 15, 925-931(2021).
[264] S. A. Srinivasan, M. Berciano, P. De Heyn, S. Lardenois, M. Pantouvaki, J. Van Campenhout. 27 GHz silicon-contacted waveguide-coupled Ge/Si avalanche photodiode. J. Lightwave Technol., 38, 3044-3050(2020).
[265] S. A. Srinivasan, J. Lambrecht, D. Guermandi, S. Lardenois, M. Berciano, P. Absil, J. Bauwelinck, X. Yin, M. Pantouvaki, J. Van Campenhout. 56 Gb/s NRZ O-band hybrid BiCMOS-silicon photonics receiver using Ge/Si avalanche photodiode. J. Lightwave Technol., 39, 1409-1415(2020).
[266] X. Zeng, Z. Huang, B. Wang, D. Liang, M. Fiorentino, R. G. Beausoleil. Silicon–germanium avalanche photodiodes with direct control of electric field in charge multiplication region. Optica, 6, 772-777(2019).
[267] S. Assefa, F. Xia, Y. A. Vlasov. Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects. Nature, 464, 80-84(2010).
[268] L. Virot, P. Crozat, J.-M. Fédéli, J.-M. Hartmann, D. Marris-Morini, E. Cassan, F. Boeuf, L. Vivien. Germanium avalanchereceiver for low power interconnects. Nat. Commun., 5, 4957(2014).
[269] Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product. Nat. Photonics, 3, 59-63(2009).
[270] Y. Kang, Z. Huang, Y. Saado, J. Campbell, A. Pauchard, J. Bowers, M. Paniccia. High performance Ge/Si avalanche photodiodes development in Intel. Optical Fiber Communication Conference (OFC), OWZ1(2011).
[271] Z. Huang, C. Li, D. Liang, K. Yu, C. Santori, M. Fiorentino, W. Sorin, S. Palermo, R. G. Beausoleil. 25 Gbps low-voltage waveguide Si–Ge avalanche photodiode. Optica, 3, 793-798(2016).
[272] M. Huang, P. Cai, S. Li, L. Wang, T.-I. Su, L. Zhao, W. Chen, C.-Y. Hong, D. Pan. Breakthrough of 25 Gb/s germanium on silicon avalanche photodiode. Optical Fiber Communication Conference (OFC), Tu2D.2(2016).
[273] G. Kim, S. Kim, S. A. Kim, J. H. Oh, K. S. Jang. NDR-effect vertical-illumination-type Ge-on-Si avalanche photodetector. Opt. Lett., 43, 5583-5586(2018).
[274] S. Park, Y. Malinge, O. Dosunmu, G. Lovell, S. Slavin, K. Magruder, Y. Kang, A. Liu. 50-Gbps receiver subsystem using Ge/Si avalanche photodiode and integrated bypass capacitor. Optical Fiber Communications Conference and Exhibition (OFC), M3A.3(2019).
[275] A. Samani, O. Carpentier, E. El-Fiky, M. Jacques, A. Kumar, Y. Wang, L. Guenin, C. Gamache, P.-C. Koh, D. V. Plant. Highly sensitive, 112 Gb/s O-band waveguide coupled silicon-germanium avalanche photodetectors. Optical Fiber Communication Conference (OFC), Th3B.1(2019).
[276] B. Shi, F. Qi, P. Cai, X. Chen, Z. He, Y. Duan, G. Hou, T. Su, S. Li, W. Chen. 106 Gb/s normal-incidence Ge/Si avalanche photodiode with high sensitivity. Optical Fiber Communications Conference and Exhibition (OFC), M3D.2(2020).
[277] C. Doerr, L. Chen. Silicon photonics in optical coherent systems. Proc. IEEE, 106, 2291-2301(2018).
[278] S. Bernabé, Q. Wilmart, K. Hasharoni, K. Hassan, Y. Thonnart, P. Tissier, Y. Désières, S. Olivier, T. Tekin, B. Szelag. Silicon photonics for terabit/s communication in data centers and exascale computers. Solid-State Electron., 179, 107928(2021).
[280] E. El-Fiky, A. Samani, D. Patel, M. Jacques, M. Sowailem, D. V. Plant. 400 Gb/s O-band silicon photonic transmitter for intra-datacenter optical interconnects. Opt. Express, 27, 10258-10268(2019).
[281] H. Yu, P. Doussiere, D. Patel, W. Lin, K. Al-hemyari, J. Park, C. Jan, R. Herrick, I. Hoshino, L. Busselle, M. Bresnehan, A. Bowles, G. A. Ghiurcan, H. Frish, S. Yerkes, R. Venables, P. Seddighian, X. Serey, K. Nguyen, A. Banerjee, S. A. Asl, Q. Zhu, S. Gupta, A. Fuerst, A. Dahal, J. Chen, Y. Malinge, H. Mahalingam, M. Kwon, S. Gupta, A. Agrawal, R. Narayan, M. Favaro, D. Zhu, Y. Akulova. 400 Gbps fully integrated DR4 silicon photonics transmitter for data center applications. Optical Fiber Communications Conference and Exhibition (OFC), T3H.6(2020).
[282] E. Timurdogan, Z. Su, R.-J. Shiue, M. J. Byrd, C. V. Poulton, K. Jabon, C. DeRose, B. R. Moss, E. S. Hosseini, I. Duzevik, M. Whitson, R. P. Millman, D. A. Atlas, M. R. Watts. 400G silicon photonics integrated circuit transceiver chipsets for CPO, OBO, and pluggable modules. Optical Fiber Communication Conference (OFC), T3H.2(2020).
[283] X. Zhang, D. Zheng, Z. Ying, Y. Li, M. Ding, D. Lam, S. Tu, R. Wu, X. Zhang, Y. Sun, X. Wang, X. Huang, T. Wang. Integrated silicon photonics transmitter in 400GBASE-DR4 QSFP-DD transceiver. Optical Fiber Communication Conference (OFC), M3A.2(2021).
[284] Y. Zhao. Silicon photonic based stacked die assembly for 4 × 200-Gbit/s short-reach transmission. Optical Fiber Communication Conference (OFC), F2F.2(2021).
[285] S. Pitris, C. Mitsolidou, M. Moralis-Pegios, K. Fotiadis, Y. Ban, P. De Heyn, J. Van Campenhout, J. Lambrecht, H. Ramon, X. Yin, J. Bauwelinck, N. Pleros, T. Alexoudi. 400 Gb/s silicon photonic transmitter and routing WDM technologies for glueless 8-socket chip-to-chip interconnects. J. Lightwave Technol., 38, 3366-3375(2020).
[286] H. Zhang, M. Li, Y. Zhang, D. Zhang, Q. Liao, J. He, S. Yu. 800 Gbit/s transmission over 1 km single-mode fiber using a four-channel silicon photonic transmitter. Photon. Res., 8, 1776-1782(2020).
[287] S. Fathololoumi, D. Hui, S. Jadhav, J. Chen, K. Nguyen, M. N. Sakib, Z. Li, H. Mahalingam, S. Amiralizadeh, N. N. Tang, H. Potluri, M. Montazeri, H. Frish, R. A. Defrees, C. Seibert, A. Krichevsky, J. K. Doylend, J. Heck, R. Venables, A. Dahal, A. Awujoola, A. Vardapetyan, G. Kaur, M. Cen, V. Kulkarni, S. S. Islam, R. L. Spreitzer, S. Garag, A. C. Alduino, R. K. Chiou, L. Kamyab, S. Gupta, B. Xie, R. S. Appleton, S. Hollingsworth, S. McCargar, Y. Akulova, K. M. Brown, R. Jones, D. Zhu, T. Liljeberg, L. Liao. 1.6 Tbps silicon photonics integrated circuit and 800 Gbps photonic engine for switch co-packaging demonstration. J. Lightwave Technol., 39, 1155-1161(2021).
[288] M. Wade. An error-free 1 Tbps WDM optical I/O chiplet and multi-wavelength multi-port laser. Optical Fiber Communication Conference (OFC), F3C.6(2021).
[290] Z. Zheng, A. Mohammadi, O. Jafari, H. Sepehrian, J. Lin, X. Zhang, W. Shi. Silicon IQ modulator for 120 Gbaud QAM. European Conference on Optical Communication (ECOC), 1-4(2021).
[291] L. Zhu, J. Zhou, J. Wang, Q. Zhang. Pre-equalization and bandwidth limitation for a 100-G-Baud 32 QAM all-silicon transmitter. IEEE Photon. Technol. Lett., 31, 1453-1456(2019).
[292] S. Zhalehpour, M. Guo, J. Lin, Z. Zhang, H. Sepehrian, Y. Qiao, L. A. Rusch. All silicon IQ modulator with 1Tb/s line rate. Optical Fiber Communication Conference (OFC), W3D.6(2020).
[293] S. Yamanaka, Y. Ikuma, T. Itoh, Y. Kawamura, K. Kikuchi, Y. Kurata, M. Jizodo, T. Jyo, S. Soma, M. Takahashi, K. Tsuzuki, M. Nagatani, Y. Nasu, A. Matsushita, T. Yamada. Silicon photonics coherent optical subassembly with EO and OE bandwidths of over 50 GHz. Optical Fiber Communication Conference (OFC), Th4A.4(2020).
[294] S. Yamanaka, Y. Nasu. Silicon photonics coherent optical subassembly for high-data-rate signal transmissions. Optical Fiber Communication Conference (OFC), Th5F.2(2021).
[295] C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, V. M. Stojanović. Single-chip microprocessor that communicates directly using light. Nature, 528, 534-538(2015).
[296] A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, R. J. Ram. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature, 556, 349-354(2018).
[297] Q. Cheng, S. Rumley, M. Bahadori, K. Bergman. Photonic switching in high performance datacenters [Invited]. Opt. Express, 26, 16022-16043(2018).
[298] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, R. Baets. Silicon microring resonators. Laser Photon. Rev., 6, 47-73(2012).
[299] N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, M. Lipson. Optical 4 × 4 hitless silicon router for optical networks-on-chip (NoC). Opt. Express, 16, 15915-15922(2008).
[300] K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, H. Kawashima. Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer. Opt. Express, 23, 17599-17606(2015).
[301] R. Ji, L. Yang, L. Zhang, Y. Tian, J. Ding, H. Chen, Y. Lu, P. Zhou, W. Zhu. Five-port optical router for photonic networks-on-chip. Opt. Express, 19, 20258-20268(2011).
[302] R. Ji, L. Yang, L. Zhang, Y. Tian, J. Ding, H. Chen, Y. Lu, P. Zhou, W. Zhu. Microring-resonator-based four-port optical router for photonic networks-on-chip. Opt. Express, 19, 18945-18955(2011).
[303] D. Nikolova, D. M. Calhoun, Y. Liu, S. Rumley, A. Novack, T. Baehr-Jones, M. Hochberg, K. Bergman. Modular architecture for fully non-blocking silicon photonic switch fabric. Microsys. Nanoeng., 3, 16071(2017).
[304] Q. Cheng, L. Y. Dai, N. C. Abrams, Y.-H. Hung, P. E. Morrissey, M. Glick, P. O’Brien, K. Bergman. Ultralow-crosstalk, strictly non-blocking microring-based optical switch. Photon. Res., 7, 155-161(2019).
[305] K. Padmaraju, D. F. Logan, T. Shiraishi, J. J. Ackert, A. P. Knights, K. Bergman. Wavelength locking and thermally stabilizing microring resonators using dithering signals. J. Lightwave Technol., 32, 505-512(2014).
[306] X. Zhu, K. Padmaraju, L.-W. Luo, S. Yang, M. Glick, R. Dutt, M. Lipson, K. Bergman. Fast wavelength locking of a microring resonator. IEEE Photon. Technol. Lett., 26, 2365-2368(2014).
[307] A. S. P. Khope, T. Hirokawa, A. M. Netherton, M. Saeidi, Y. Xia, N. Volet, C. Schow, R. Helkey, L. Theogarajan, A. A. M. Saleh, J. E. Bowers, R. C. Alferness. On-chip wavelength locking for photonic switches. Opt. Lett., 42, 4934-4937(2017).
[308] A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, K. Bergman. Broadband operation of nanophotonic router for silicon photonic networks-on-chip. IEEE Photon. Technol. Lett., 22, 926-928(2010).
[309] A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, J. Chan, M. Lipson, K. Bergman. Broadband silicon photonic electrooptic switch for photonic interconnection networks. IEEE Photon. Technol. Lett., 23, 504-506(2011).
[310] P. Dasmahapatra, R. Stabile, A. Rohit, K. A. Williams. Optical crosspoint matrix using broadband resonant switches. IEEE J. Sel. Top. Quantum Electron., 20, 5900410(2014).
[311] P. Chen, S. Chen, X. Guan, Y. Shi, D. Dai. High-order microring resonators with bent couplers for a box-like filter response. Opt. Lett., 39, 6304-6307(2014).
[312] R. A. Soref, B. E. Little. Proposed N-wavelength M-fiber WDM cross connect switch using active microring resonators. IEEE Photon. Technol. Lett., 10, 1121-1123(1998).
[313] Y. Goebuchi, M. Hisada, T. Kato, Y. Kokubun. Optical cross-connect circuit using hitless wavelength selective switch. Opt. Express, 16, 535-548(2008).
[314] A. S. P. Khope, M. Saeidi, R. Yu, X. Wu, A. M. Netherton, Y. Liu, Z. Zhang, Y. Xia, G. Fleeman, A. Spott, S. Pinna, C. Schow, R. Helkey, L. Theogarajan, R. C. Alferness, A. A. M. Saleh, J. E. Bowers. Multi-wavelength selective crossbar switch. Opt. Express, 27, 5203-5216(2019).
[315] A. S. P. Khope, S. Liu, Z. Zhang, A. M. Netherton, R. L. Hwang, A. Wissing, J. Perez, F. Tang, C. Schow, R. Helkey, R. C. Alferness, A. A. M. Saleh, J. E. Bowers. 2λ switch. Opt. Lett., 45, 5340-5343(2020).
[316] L. B. Soldano, E. C. M. Pennings. Optical multi-mode interference devices based on self-imaging: principles and applications. J. Lightwave Technol., 13, 615-627(1995).
[317] S. Chen, Y. Shi, S. He, D. Dai. Low-loss and broadband 2 × 2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers. Opt. Lett., 41, 836-839(2016).
[318] K. Suzuki, G. Cong, K. Tanizawa, S. H. Kim, K. Ikeda, S. Namiki, H. Kawashima. Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter. Opt. Express, 23, 9086-9092(2015).
[319] M. Wang, A. Ribero, Y. Xing, W. Bogaerts. Tolerant, broadband tunable 2 × 2 coupler circuit. Opt. Express, 28, 5555-5566(2020).
[320] H. Xu, D. Dai, Y. Shi. Low-crosstalk and fabrication-tolerant four-channel CWDM filter based on dispersion-engineered Mach-Zehnder interferometers. Opt. Express, 29, 20617-20631(2021).
[321] L. Song, H. Li, D. Dai. Mach–Zehnder silicon-photonic switch with low random phase errors. Opt. Lett., 46, 78-81(2020).
[322] R. Ramaswami, K. Sivarajan, G. Sasaki. Optical Networks: A Practical Perspective(2009).
[323] M. Yang, W. M. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, Y. A. Vlasov. Non-blocking 4 × 4 electro-optic silicon switch for on-chip photonic networks. Opt. Express, 19, 47-54(2011).
[324] S. Zhao, L. Lu, L. Zhou, D. Li, Z. Guo, J. Chen. 16 × 16 silicon Mach–Zehnder interferometer switch actuated with waveguide microheaters. Photon. Res., 4, 202-207(2016).
[325] L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, J. Chen. 16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers. Opt. Express, 24, 9295-9307(2016).
[326] C. Li, D. Liu, D. Dai. Multimode silicon photonics. Nanophotonics, 8, 227-247(2018).
[327] H. Xu, D. Dai, Y. Shi. Silicon integrated nanophotonic devices for on-chip multi-mode interconnects. Appl. Sci., 10, 18(2020).
[328] C. Sun, Y. Yu, G. Chen, X. Zhang. Integrated switchable mode exchange for reconfigurable mode-multiplexing optical networks. Opt. Lett., 41, 3257-3260(2016).
[329] C. Sun, Y. Yu, G. Chen, X. Zhang. On-chip switch for reconfigurable mode-multiplexing optical network. Opt. Express, 24, 21722-21728(2016).
[330] Y. Xiong, R. B. Priti, O. Liboiron-Ladouceur. High-speed two-mode switch for mode-division multiplexing optical networks. Optica, 4, 1098-1102(2017).
[331] B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, M. Lipson. On-chip mode-division multiplexing switch. Optica, 2, 530-535(2015).
[332] S. Wang, X. Feng, S. Gao, Y. Shi, T. Dai, H. Yu, H. K. Tsang, D. Dai. On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/mode-division-multiplexing systems. Opt. Lett., 42, 2802-2805(2017).
[333] D. Gostimirovic, W. N. Ye. Compact silicon-photonic mode-division (de)multiplexer using waveguide-wrapped microdisk resonators. Opt. Lett., 46, 388-391(2021).
[334] S. Wang, H. Wu, H. K. Tsang, D. Dai. Monolithically integrated reconfigurable add-drop multiplexer for mode-division-multiplexing systems. Opt. Lett., 41, 5298-5301(2016).
[335] Y. Zhang, Y. He, Q. Zhu, C. Qiu, Y. Su. On-chip silicon photonic 2 × 2 mode- and polarization-selective switch with low inter-modal crosstalk. Photon. Res., 5, 521-526(2017).
[336] R. B. Priti, O. Liboiron-Ladouceur. Reconfigurable and scalable multimode silicon photonics switch for energy-efficient mode-division-multiplexing systems. J. Lightwave Technol., 37, 3851-3860(2019).
[337] G. Zhou, Y. Guo, L. Lu, J. Chen, L. Zhou. Silicon reconfigurable mode-selective modulation for on-chip mode-multiplexed photonic systems. Opt. Lett., 46, 1145-1148(2021).
[338] C. Sun, W. Wu, Y. Yu, G. Chen, X. Zhang, X. Chen, D. J. Thomson, G. T. Reed. De-multiplexing free on-chip low-loss multimode switch enabling reconfigurable inter-mode and inter-path routing. Nanophotonics, 7, 1571-1580(2018).
[339] L. Yang, T. Zhou, H. Jia, S. Yang, J. Ding, X. Fu, L. Zhang. General architectures for on-chip optical space and mode switching. Optica, 5, 180-187(2018).
[340] D. Zhou, C. Sun, Y. Lai, Y. Yu, X. Zhang. Integrated silicon multifunctional mode-division multiplexing system. Opt. Express, 27, 10798-10805(2019).
[341] X. Han, H. Xiao, Y. Jiang, G. Ren, P. Zhang, J. Tan, J. Yang, A. Mitchell, Y. Tian. Integrated non-blocking optical router harnessing wavelength- and mode-selective property for photonic networks-on-chip. Opt. Express, 29, 1251-1264(2021).
[342] T. Zhou, H. Jia, J. Ding, L. Zhang, X. Fu, L. Yang. On-chip broadband silicon thermo-optic 2 × 2 four-mode optical switch for optical space and local mode switching. Opt. Express, 26, 8375-8384(2018).
[343] H. Jia, S. Yang, T. Zhou, S. Shao, X. Fu, L. Zhang, L. Yang. WDM-compatible multimode optical switching system-on-chip. Nanophotonics, 8, 889-898(2019).
[344] X. Cao, S. Zheng, N. Zhou, J. Zhang, J. Wang. On-chip multi-dimensional 1 × 4 selective switch with simultaneous mode-/polarization-/wavelength-division multiplexing. IEEE J. Quantum Electron., 56, 8400608(2020).
[345] C. Zhang, S. Zhang, J. D. Peters, J. E. Bowers. 8 × 8 × 40 Gbps fully integrated silicon photonic network on chip. Optica, 3, 785-786(2016).
[346] H. Xu, C. Liu, D. Dai, Y. Shi. Direct-access mode-division multiplexing switch for scalable on-chip multi-mode networks. Nanophotonics, 10, 4551-4566(2021).
[347] S. Han, T. J. Seok, N. Quack, B.-W. Yoo, M. C. Wu. Large-scale silicon photonic switches with movable directional couplers. Optica, 2, 370-375(2015).
[348] T. J. Seok, N. Quack, S. Han, R. S. Muller, M. C. Wu. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica, 3, 64-70(2016).
[349] C. Haffner, A. Joerg, M. Doderer, F. Mayor, D. Chelladurai, Y. Fedoryshyn, C. I. Roman, M. Mazur, M. Burla, H. J. Lezec, V. A. Aksyuk, J. Leuthold. Nano-opto-electro-mechanical switches operated at CMOS-level voltages. Science, 366, 860-864(2019).
[350] T. J. Seok, K. Kwon, J. Henriksson, J. Luo, M. C. Wu. Wafer-scale silicon photonic switches beyond die size limit. Optica, 6, 490-494(2019).
[351] W. Pernice, T. Grottke, W. Hartmann, C. Schuck. Optoelectromechanical phase shifter with low insertion loss and 13π tuning range. Opt. Express, 29, 5525-5537(2020).
[352] R. Baghdadi, M. Gould, S. Gupta, M. Tymchenko, D. Bunandar, C. Ramey, N. C. Harris. Dual slot-mode NOEM phase shifter. Opt. Express, 29, 19113-19119(2021).
[353] A. Y. Takabayashi, H. Sattari, P. Edinger, P. Verheyen, K. B. Gylfason, W. Bogaerts, N. Quack. Broadband compact single-pole double-throw silicon photonic MEMS switch. J. Microelectromech. Syst., 30, 322-329(2021).
[354] W. Jin, A. Feshali, M. Paniccia, J. E. Bowers. Seamless multi-reticle photonics. Opt. Lett., 46, 2984-2987(2021).
[355] C. Wu, H. Yu, H. Li, X. Zhang, I. Takeuchi, M. Li. Low-loss integrated photonic switch using subwavelength patterned phase change material. ACS Photon., 6, 87-92(2018).
[356] P. Xu, J. Zheng, J. K. Doylend, A. Majumdar. Low-loss and broadband nonvolatile phase-change directional coupler switches. ACS Photon., 6, 553-557(2019).
[357] H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, J. Chen. Miniature multilevel optical memristive switch using phase change material. ACS Photon., 6, 2205-2212(2019).
[358] C. Zhang, M. Zhang, Y. Xie, Y. Shi, R. Kumar, R. R. Panepucci, D. Dai. Wavelength-selective 2 × 2 optical switch based on a Ge2Sb2Te5-assisted microring. Photon. Res., 8, 1171-1176(2020).
[359] J. Zheng, Z. Fang, C. Wu, S. Zhu, P. Xu, J. K. Doylend, S. Deshmukh, E. Pop, S. Dunham, M. Li, A. Majumdar. Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater. Adv. Mater., 32, 2001218(2020).
[360] H. Chen, H. Jia, J. Yang, Y. Tian, T. Wang. Ultra-compact switchable mode converter based on silicon and optical phase change material hybrid metastructure. Opt. Commun., 473, 125889(2020).