Acta Optica Sinica, Volume. 43, Issue 7, 0706003(2023)
Dynamic Compensation of Tunable Filter Demodulation Error Based on Least Squares Support Vector Machine and Multi-Reference Gratings
[1] Li Z Y, Xu Z Q, Tang Z H et al. Research of high-speed FBG demodulation system for distributed dynamic monitoring of mechanical equipment[J]. Advances in Mechanical Engineering, 2013, 107073(2013).
[2] Zhao X L, Zhang Y X, Zhang W G et al. Ultra-high sensitivity and temperature-compensated Fabry-Perot strain sensor based on tapered FBG[J]. Optics & Laser Technology, 124, 105997(2020).
[3] Sheng W J, Peng G D, Liu Y et al. An optimized strain demodulation method for PZT driven fiber Fabry-Perot tunable filter[J]. Optics Communications, 349, 31-35(2015).
[4] Park H J, Song M. Linear FBG temperature sensor interrogation with Fabry-Perot ITU multi-wavelength reference[J]. Sensors, 8, 6769-6776(2008).
[5] Liu Y F, Du D S, Qi N M et al. A distributed parameter Maxwell-slip model for the hysteresis in piezoelectric actuators[J]. IEEE Transactions on Industrial Electronics, 66, 7150-7158(2019).
[6] Li Z, Shan J J. Modeling and inverse compensation for coupled hysteresis in piezo-actuated Fabry-Perot spectrometer[J]. IEEE/ASME Transactions on Mechatronics, 22, 1903-1913(2017).
[7] Jain A, Prashanth K J, Sharma A K et al. Dielectric and piezoelectric properties of PVDF/PZT composites: a review[J]. Polymer Engineering & Science, 55, 1589-1616(2015).
[8] Miclea C, Tanasoiu C, Amarande L et al. Effect of temperature on the main piezoelectric parameters of a soft PZT ceramic[J]. Romanian Journal of Information Science and Technology, 10, 243-250(2007).
[9] Khaliq J, Deutz D B, Frescas J A C et al. Effect of the piezoelectric ceramic filler dielectric constant on the piezoelectric properties of PZT-epoxy composites[J]. Ceramics International, 43, 2774-2779(2017).
[10] Liu K, Jing W C, Peng G D et al. Investigation of PZT driven tunable optical filter nonlinearity using FBG optical fiber sensing system[J]. Optics Communications, 281, 3286-3290(2008).
[11] Wang P, Zhao H, Liu J et al. Dynamic real-time calibration method for fiber Bragg grating wavelength demodulation system based on tunable Fabry-Perot filter[J]. Acta Optica Sinica, 35, 0806006(2015).
[12] Li C, Wang Y J, Li F. Highly stable FBG wavelength demodulation system based on F-P etalon with temperature control module[J]. Infrared and Laser Engineering, 46, 122002(2017).
[13] Guo H R, Liu K, Jiang J F et al. Optical fiber high and low temperature mechanical and thermal multi-parameter sensing system based on tunable laser[J]. Chinese Journal of Lasers, 48, 1906003(2021).
[14] Qiao X G, Wang Y, Fu H W et al. High-accuracy real time calibration of tunable Fabry-Pérot filter on large range[J]. Acta Optica Sinica, 28, 852-855(2008).
[15] Fan X J, Jiang J F, Zhang X Z et al. Self-marked HCN gas based FBG demodulation in thermal cycling process for aerospace environment[J]. Optics Express, 26, 22944-22953(2018).
[16] Rivera E, Thomson D J. Accurate strain measurements with fiber Bragg sensors and wavelength references[J]. Smart Materials and Structures, 15, 325-330(2006).
[17] Jiang J F, Zang C J, Wang S et al. Investigation of composite multi-wavelength reference stablization method for FBG demodulator in unsteady temperature environment[J]. Journal of Optoelectronics·Laser, 29, 575-581(2018).
[18] Zhang X Z, Li Y Q, Hu H F et al. Recovered HCN absorption spectrum-based FBG demodulation method covering the whole C-band for temperature changing environment[J]. IEEE Access, 8, 15039-15046(2020).
[19] Cheng J C, Fang J C, Wu W R et al. Temperature drift modeling and compensation of RLG based on PSO tuning SVM[J]. Measurement, 55, 246-254(2014).
[20] Chong S, Song R, Li J et al. Temperature drift modeling of MEMS gyroscope based on genetic-Elman neural network[J]. Mechanical Systems and Signal Processing, 72/73, 897-905(2016).
[21] Sheng W J, Dong Z Z, Yang N et al. Temperature compensation of tunable filter based on integrated moving window[J]. Acta Optica Sinica, 41, 2306005(2021).
[22] Sheng W J, Dang H Q, Peng G D. Hysteresis and temperature drift compensation for FBG demodulation by utilizing adaptive weight least square support vector regression[J]. Optics Express, 29, 40547-40558(2021).
[23] Sheng W J, Hu Z B, Yang N et al. Demodulation of temperature stabilized fiber Bragg grating sensor based on optimized least square support vector machine[J]. Laser & Optoelectronics Progress, 59, 0305002(2022).
[24] Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 9, 293-300(1999).
[25] Sarkar S, Inupakutika D, Banerjee M et al. Machine learning methods for discriminating strain and temperature effects on FBG-based sensors[J]. IEEE Photonics Technology Letters, 33, 876-879(2021).
[26] Askins C G, Putnam M A, Friebele E J. Instrumentation for interrogating many-element fiber Bragg grating arrays[J]. Proceedings of SPIE, 2444, 257-266(1995).
Get Citation
Copy Citation Text
Wenjuan Sheng, Haitao Lou, Gangding Peng. Dynamic Compensation of Tunable Filter Demodulation Error Based on Least Squares Support Vector Machine and Multi-Reference Gratings[J]. Acta Optica Sinica, 2023, 43(7): 0706003
Category: Fiber Optics and Optical Communications
Received: Aug. 29, 2022
Accepted: Nov. 23, 2022
Published Online: Apr. 6, 2023
The Author Email: Sheng Wenjuan (wenjuansheng@shiep.edu.cn)