Infrared Technology, Volume. 47, Issue 4, 475(2025)

Improved Infrared Small Target Detection Algorithm Based on SSE-YOLO

Mei DA, Lin JIANG*, Youfeng TAO, and Miao HU
Author Affiliations
  • Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
  • show less
    References(22)

    [3] [3] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.

    [4] [4] Girshick R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.

    [5] [5] REN S, HE K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017,39(6): 1137-1149.

    [6] [6] LIN T Y, Dollr P, Girshick R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.

    [7] [7] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.

    [8] [8] LIU W, Anguelov D, Erhan D, et al. Ssd: single shot multibox detector[C]//Proceedings of Computer Vision–ECCV, 14th European Conference, Part I, 2016: 21-37.

    [12] [12] Rejin Varghese, Sambath M. YOLOv8: a novel object detection algorithm with enhanced performance and robustness[C]//2024International Conference on Advances in Data Engineering and Intelligent Computing Systems(ADICS), 2024: DOI: 10.1109/ADICS58448.2024.10533619.

    [13] [13] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.

    [14] [14] Sunkara R, LUO T. No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects[C]//Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2022: 443-459.

    [15] [15] ZHANG X, ZHOU X, LIN M, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proc. of IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2018: 6848-6856.

    [16] [16] Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module[C]//Lect. Notes Comput. Sci.(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 2018,11211: 3-19.

    [17] [17] HU J, SHEN L, SUN G, et al. Squeeze-and-excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, DOI: 10.1109/CVPR.2018.00745.

    [18] [18] DU S, ZHANG B, ZHANG P, et al. An improved bounding box regression loss function based on CIOU loss for multi-scale object detection[C]//International Conference on Pattern Recognition and Machine Learning of IEEE, 2021: DOI: 10.1109/PRML52754.2021.9520717.

    [19] [19] YU J, JIANG Y, WANG Z, et al. Unitbox: an advanced object detection network[C]//Proceedings of the24th ACM International Conference on Multimedia, 2016: 516-520.

    [20] [20] ZHANG H, ZHANG S. Shape-IoU: more accurate metric considering bounding box shape and scale[J]. arXiv preprint arXiv: 2312.17663, 2023.

    [21] [21] CHEN C Y, LIU M Y, TUZEL O, et al. R-CNN for small object detection[C]//Proceeding of Asian Conference on Computer Vision, 2016,10115: 214-230.

    [22] [22] YANG L, ZHANG R Y, LI L, et al. Simam: a simple, parameter-free attention module for convolutional neural networks[C]//International Conference on Machine Learning, PMLR, 2021: 11863-11874.

    [23] [23] HUANG H, CHEN Z, ZOU Y, et al. Channel prior convolutional attention for medical image segmentation[J]. arXiv preprint arXiv: 2306.05196, 2023.

    [24] [24] GUO M H, LU C Z, HOU Q, et al. Segnext: rethinking convolutional attention design for semantic segmentation. arXiv 2022[J]. arXiv preprint arXiv: 2209.08575, 2022.

    [25] [25] WAN D, LU R, SHEN S, et al. Mixed local channel attention for object detection[J].Engineering Applications of Artificial Intelligence, 2023,123: 106442.

    [26] [26] Adarsh P, Rathi P, Kumar M. YOLO v3-tiny: object detection and recognition using one stage improved model[C]//2020 6th International Conference on Advanced Computing and Communication Systems(ICACCS), 2020: 687-694.

    [27] [27] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv preprint arXiv: 2209.02976, 2022.

    Tools

    Get Citation

    Copy Citation Text

    DA Mei, JIANG Lin, TAO Youfeng, HU Miao. Improved Infrared Small Target Detection Algorithm Based on SSE-YOLO[J]. Infrared Technology, 2025, 47(4): 475

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 28, 2024

    Accepted: May. 13, 2025

    Published Online: May. 13, 2025

    The Author Email: JIANG Lin (tojianglin@163.com)

    DOI:

    Topics