Semiconductor Optoelectronics, Volume. 46, Issue 4, 666(2025)
Mid-infrared Reconstructive Spectrometer on a Germanium-on-Silicon Platform
[1] [1] Jung G, Hong S, Jeong Y, et al. Highly selective and low-power carbon monoxide gas sensor based on the chain reaction of oxygen and carbon monoxide to WO3[J]. ACS Applied Materials & Interfaces, 2022, 14(15): 17950-17958.
[2] [2] Liu H, Wu B, Chen C, et al. D-shaped tellurite photonic crystal fiber hydrogen and methane sensor based on four-wave mixing with SPR effect[J]. Photonic Sensors, 2022, 13(1): 230121.
[3] [3] Bacon C P, Mattley Y, DeFrece R. Miniature spectroscopic instrumentation: applications to biology and chemistry[J]. Review of Scientific Instruments, 2004, 75(1): 1-16.
[4] [4] Ozbek N, Akman S. Determination of fluorine in Turkish wines by molecular absorbance of CaF using a high resolution continuum source atomic absorption spectrometer[J]. LWT -Food Science and Technology, 2015, 61(1): 112-116.
[5] [5] Crocombe R A. Portable spectroscopy[J]. Applied Spectroscopy, 2018, 72(12): 1701-1751.
[6] [6] McGonigle A, Wilkes T, Pering T, et al. Smartphone spectrometers[J]. Sensors, 2018, 18(1): 223.
[7] [7] Edwards P, Zhang C, Zhang B, et al. Smartphone based optical spectrometer for diffusive reflectance spectroscopic measurement of hemoglobin[J]. Scientific Reports, 2017, 7: 12224.
[8] [8] Duong Dinh T T, Le Roux X, Koompai N, et al. Mid-infrared Fourier-transform spectrometer based on metamaterial lateral cladding suspended silicon waveguides[J]. Optics Letters, 2022, 47(4): 810-813.
[9] [9] Wei C, Du H, Yan X, et al. Mid-infrared SOI waveguide thermo-optic Fourier-transform spectrometer[J]. Proc. SPIE, 2023, 12426: 124260E.
[10] [10] Shao Q, Ma X, Li M, et al. Thermo-tuning Fourier transform spectrometer based on SU-8 waveguide[J]. Polymers, 2025, 17(3): 261.
[11] [11] Chen H, Zhang H, Zhou J, et al. High-performance and wavelength-transplantable on-chip Fourier transform spectrometer using MEMS in-plane reconfiguration[J]. Photonics Research, 2024, 12(8): 1730.
[12] [12] Ghoname A O, Sabry Y M, Anwar M, et al. Ultra wide band MIR MEMS FTIR spectrometer[J]. Proc. SPIE, 2019, 10931: 109310Z.
[13] [13] Salem A M, Sabry Y M, Fathy A, et al. Single MEMS chip enabling dual spectral-range infrared micro-spectrometer with optimal detectors[J]. Advanced Materials Technologies, 2021, 6(5): 2001013.
[14] [14] Yang Z, Albrow-Owen T, Cai W, et al. Miniaturization of optical spectrometers[J]. Science, 2021, 371(6528): eabe0722.
[15] [15] Qiao Q, Liu X, Ren Z, et al. MEMS-enabled on-chip computational mid-infrared spectrometer using silicon photonics[J]. ACS Photonics, 2022, 9(7): 2367-2377.
[16] [16] Craig B, Shrestha V R, Meng J, et al. Experimental demonstration of infrared spectral reconstruction using plasmonic metasurfaces[J]. Optics Letters, 2018, 43(18): 4481-4484.
[17] [17] Jang W Y, Ku Z, Jeon J, et al. Experimental demonstration of adaptive infrared multispectral imaging using plasmonic filter array[J]. Scientific Reports, 2016, 6: 34876.
[18] [18] Lee H S, Hwang G W, Seong T Y, et al. Design of mid-infrared filter array based on plasmonic metal nanodiscs array and its application to on-chip spectrometer[J]. Scientific Reports, 2021, 11: 12218.
[19] [19] Huang E, Ma Q, Liu Z. Etalon array reconstructive spectrometry[J]. Scientific Reports, 2017, 7: 40693.
[20] [20] Wen J, Hao L, Gao C, et al. Deep learning-based miniaturized all-dielectric ultracompact film spectrometer[J]. ACS Photonics, 2023, 10(1): 225-233.
[21] [21] Yao C, Xu K, Lin T, et al. Benchmarking reconstructive spectrometer with multiresonant cavities[J]. ACS Photonics, 2024, 11(9): 3730-3740.
[23] [23] Nedeljkovic M, Velasco A V, Khokhar A Z, et al. Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip[J]. IEEE Photonics Technology Letters, 2015, 28(4): 528-531.
[24] [24] Heidari E, Xu X, Chung C J, et al. On-chip Fourier transform spectrometer on silicon-on-sapphire[J]. Optics Letters, 2019, 44(11): 2883-2886.
[25] [25] Zhang L, Agarwal A M, Kimerling L C, et al. Nonlinear Group Ⅳ photonics based on silicon and germanium: from near-infrared to mid-infrared[J]. Nanophotonics, 2014, 3(4/5): 247-268.
[26] [26] Liu Q, Ramirez J M, Vakarin V, et al. Integrated broadband dual-polarization Ge-rich SiGe mid-infrared Fourier-transform spectrometer[J]. Optics Letters, 2018, 43(20): 5021-5024.
[27] [27] Montesinos-Ballester M, Liu Q, Vakarin V, et al. On-chip Fourier-transform spectrometer based on spatial heterodyning tuned by thermo-optic effect[J]. Scientific Reports, 2019, 9: 14633.
[28] [28] Li W, Anantha P, Bao S, et al. Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics[J]. Applied Physics Letters, 2016, 109(24): 241101.
[29] [29] Xia Z, Eftekhar A A, Soltani M, et al. High resolution on-chip spectroscopy based on miniaturized microdonut resonators[J]. Optics Express, 2011, 19(13): 12356-12364.
[30] [30] Boyd S, Vandenberghe L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004.
[31] [31] Chen X, Gan X, Zhu Y, et al. On-chip micro-ring resonator array spectrum detection system based on convex optimization algorithm[J]. Nanophotonics, 2023, 12(4): 715-724.
[32] [32] Li A, Fainman Y. On-chip spectrometers using stratified waveguide filters[J]. Nature Communications, 2021, 12: 2704.
[33] [33] Chen C, Li X, Yang G, et al. Computational hyperspectral devices based on quasi-random metasurface supercells[J]. Nanoscale, 2023, 15(19): 8854-8862.
[34] [34] Kozak D A, Tyndall N F, Pruessner M W, et al. Germanium-on-silicon waveguides for long-wave integrated photonics: ring resonance and thermo-optics[J]. Optics Express, 2021, 29(10): 15443-15451.
[35] [35] Bao J, Bawendi M G. A colloidal quantum dot spectrometer[J]. Nature, 2015, 523(7558): 67-70.
[36] [36] Chang X, Zhang H, Ma Z, et al. Mid-infrared Ge-based thermo-optic phase shifters with an improved figure of merit[J]. Optical Materials Express, 2022, 12(3): 1055.
[37] [37] Hu C, Zhao X, Qiu Y, et al. A computational microspectrometer based on binary-image-generated freeform metasurfaces for spectral sensing[J]. IEEE Photonics Journal, 2024, 16(1): 4600105.
[38] [38] Zhang J, Zhu X, Bao J. Solver-informed neural networks for spectrum reconstruction of colloidal quantum dot spectrometers[J]. Optics Express, 2020, 28(22): 33656-33672.
Get Citation
Copy Citation Text
CUI Haoxiang, HOU Yatong, ZHONG Qize, ZHENG Shaonan, HU Ting. Mid-infrared Reconstructive Spectrometer on a Germanium-on-Silicon Platform[J]. Semiconductor Optoelectronics, 2025, 46(4): 666
Category:
Received: Apr. 22, 2025
Accepted: Sep. 18, 2025
Published Online: Sep. 18, 2025
The Author Email: