Remote Sensing Technology and Application, Volume. 39, Issue 1, 24(2024)

Forest Change Detection based on Siamese Neural Network with GF-2 Image: A Case of Jiande Forest Farm, Zhejiang

Qiuyi AI1、*, Huaguo HUANG1, Ying GUO2, Bingjie LIU1, Shuxin CHEN2, and Xin TIAN2
Author Affiliations
  • 1Forest Resources and Environmental Management National Forest and Grass Bureau Key Laboratory,Beijing Forestry University,Beijing 100083,China
  • 2Institute of Forest Resource Information Techniques,Chinese Academy of Forestry,Beijing 100091,China
  • show less
    Figures & Tables(10)
    Location of the study area
    Constructing the dataset
    Siamese Network change detection architecture
    Normalized confusion matrix of various change detection methods
    Visualization of change detection results
    • Table 1. GF-2 load parameters

      View table
      View in Article

      Table 1. GF-2 load parameters

      载荷谱段号谱段范围/μm空间分辨率/m
      全色多光谱相机10.45~0.901
      20.45~0.524
      30.52~0.59
      40.63~0.69
      50.77~0.89
    • Table 2. ResNet50 network structure

      View table
      View in Article

      Table 2. ResNet50 network structure

      分层名称输出尺寸50-layer
      conv1112×1127×7,64,stride 2
      conv2-v56×563×3 max pool,stride 2
      1×1,643×3,641×1,256×3
      conv3-x28×281×1,1283×3,1281×1,512×4
      conv4-x14×141×1,2563×3,2561×1,1024×6
      conv5-x7×71×1,5123×3,5121×1,2048×3
      1×1average pool 1 000-d fc,softmax
      FLOPs3.8×109
    • Table 3. Experimental software and hardware configuration

      View table
      View in Article

      Table 3. Experimental software and hardware configuration

      名称试验软硬件配置
      操作系统Windows10 (64 bit)
      编程语言Python 3.7
      深度学习框架PyTorch 1.10.2
      GPUNVIDIA GeForce RTX3070
      CUDACuda 11.3
      环境管理PyCharm 2021.3
    • Table 4. Forest land change detection confusion matrix

      View table
      View in Article

      Table 4. Forest land change detection confusion matrix

      预测值
      真实值未变化-0林地变化非林地-1非林地变化林地-2
      未变化-0N00N01N02
      林地变化非林地-1N10N11N12
      非林地变化林地-2N20N21N22
    • Table 5. Comparison of change detection indicators of different methods

      View table
      View in Article

      Table 5. Comparison of change detection indicators of different methods

      编号方法主干提取网络变化类别精确率召回率F1分数
      1OursResNet50Class096.4894.5995.53
      Class176.2575.5275.88
      Class254.0678.4964.02
      Macro avg75.6082.8778.48
      2OursResNet50+CBAMClass096.6095.7196.15
      Class175.4181.6378.40
      Class266.2367.3366.78
      Macro avg79.4181.5980.44
      3OursResNet50+SEClass095.8198.5797.17
      Class187.1277.1281.81
      Class290.8656.8069.90
      Macro avg91.2677.5082.96
      4FC-Siam-concClass096.6689.5092.94
      Class175.9787.6181.37
      Class221.7149.5030.18
      Macro avg64.7875.5368.16
      5FC-Siam-diffClass095.9095.2095.55
      Class183.8483.6483.74
      Class237.7744.1040.67
      Macro avg72.5074.3073.32
    Tools

    Get Citation

    Copy Citation Text

    Qiuyi AI, Huaguo HUANG, Ying GUO, Bingjie LIU, Shuxin CHEN, Xin TIAN. Forest Change Detection based on Siamese Neural Network with GF-2 Image: A Case of Jiande Forest Farm, Zhejiang[J]. Remote Sensing Technology and Application, 2024, 39(1): 24

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Oct. 28, 2022

    Accepted: --

    Published Online: Jul. 22, 2024

    The Author Email: AI Qiuyi (867492742@qq.com)

    DOI:10.11873/j.issn.1004-0323.2024.1.0024

    Topics