Infrared Technology, Volume. 47, Issue 1, 10(2025)
Optoelectronic Applications of Sapphire Crystal Material
[3] [3] YANG G J, PENG Z Y, WANG Y Z, et al. Numerical study of thermal shock on infrared windows and their composites with diamond coatings under harsh conditions[J]. Diamond & Related Materials, 2023, 137: 110117. DOI: 10.1016/J.DIAMOND.2023.110117
[9] [9] LIU X Q, ZHANG Y L, LI Q K. et al. Biomimetic sapphire windows enabled by inside-out femtosecond laser deep-scribing[J]. PhotoniX, 2022, 3(1): 00047.
[19] [19] Locher J, Jones C, Bates H, et al. Characteristics of thick (>12 mm) class225® EFG™ sapphire sheet for IR window applications[C]//Proceeding of SPIE, 2009, 7302: 730203(1-5).
[21] [21] WU M, LIU L, MA W. Control of melt–crystal interface shape during sapphire crystal growth by heat exchanger method[J]. Journal of Crystal Growth, 2017, 474: 31-36.
[22] [22] Miyagawa C, Kobayashi T, Taishi T, et al. Demonstration of crack-free c-axis sapphire crystal growth using the vertical Bridgman method[J]. Journal of Crystal Growth, 2013, 372: 95-99.
[24] [24] Mogilevsky R, Sharafutdinova L G, MITTL S D. Optical properties of sapphire[C]//Proceeding of SPIE, 2008, 7056: 70560B(1–12).
[25] [25] LEE H C, MEISSNER H E. Characterization of AFB® sapphire single crystal composites for infrared window application[C]//Proceeding of SPIE, 2007, 6545: 1-8.
[26] [26] Colin M F. High temperature transmission measurements of IR window materials[C]//Proceedings of SPIE, 1988, 929: 79-87.
[33] [33] LIU H, WANG G, JIANG J, et al. Sub-10-fs pulse generation from a blue laser-diode-pumped Ti: sapphire oscillator[J]. Chinese Optics Letters, 2020, 18(7): 071402.
[34] [34] JIANG J, ZHANG X, WANG Z, et al. Power-scalable thin-disk Ti: sapphire laser amplifier[J]. Optics Letters, 2022, 47(21): 5634-5637.
[35] [35] WANG Y, Holgun Lerma J A, Vezzoli M, et al. Photonic-circuit-integrated titanium: sapphire laser[J]. Nature Photonics, 2023(17): 338-345.
[38] [38] Akselrod M S, Kortov V S, Kravetsky D J, et al. Highly sensitive thermo-luminescent anion–defect -Al2O3: C single crystal detectors[J]. Radiat Prot Dosim, 1990, 32(1-4): 119-122.
[39] [39] Markey B G, Colyott L E, Mckeever S W S. Time–resolved optically stimulated luminescence from -Al2O3: C[J]. Radiat Meas, 1995, 24(4): 457-463.
[43] [43] Tran T B, Alqatari F, Luc Q H. Nanophotonic crystals on unpolished sapphire substrates for deep-UV light-emitting diodes[J]. Scientific Reports, 2021, 11(1): 4981.
[45] [45] WANG B, NIU Y, ZHENG S, et al. A high temperature sensor based on sapphire fiber fabry-perot interferometer[J]. IEEE Photonics Technology Letters, 2019, 32(2): 89-92.
[46] [46] ZHANG P H, ZHANG L, WANG Z Y. Sapphire derived fiber based Fabry-Perot interferometer with an etched micro air cavity for strain measurement at high temperatures[J]. Optics Express, 2019, 27(19): 27112-27123.
[47] [47] DING H, DAN G, Hnatovsky C. Sapphire fiber Bragg grating coupled with graded-index fiber lens[C]//Quebec City: Institute of Electrical and Electronics Engineers, 2019: 21-23.
[48] [48] GUO Q, YU Y S, ZHENG Z M, et al. Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing[J]. IEEE Transactions on Nanotechnology, 2019, 18: 208-211.
[52] [52] Sundaresan A, Nie J C, Hirai M, et al. Growth of TlBa2Ca2·Cu3Oy superconducting thin film on CeO2 buffered sapphire substrate[J]. Physica C, 2002, 378(2): 1283-1286.
[53] [53] YOU Feng, WANG Zheng, XIE Qinglian, et al. Fabrication and properties of double-side Tl2Ba2CaCu2O8 thin film on CeO2 buffered sapphire substrate[J]. Chin Phys Lett, 2010, 27(4): 047401-047403.
[54] [54] Virt I S, Bester M, Dumanski L, et al. Properties of HgCdTe films obtained by laser deposition on a sapphire[J]. Appl Surf Sci, 2001, 177(3): 201-206.
[55] [55] Kotelyanskii M I, Kotelyanskii I M, Kravchenko V B. New buffer sublayers for heteroepitaxial III-V nitride films on sapphire substrates[J]. Tech. Phys. Lett., 2000, 26(2): 163-164.
[56] [56] Yoshimoto M, Yoshida K, Maruta H, et al. Epitaxial diamond growth on sapphire in an oxidizing environment[J]. Nature, 1999, 399: 340-342.
[57] [57] CHUNG G S. Thin SOI structures for sensing and integrated circuit applications[J]. Sens Actuators A, Phys, 1993, 39(3): 241-251.
[58] [58] Jeong S M, Kissinger S, Kim D W, et al. Characteristic enhancement of the blue LED chip by the growth and fabrication on patterned sapphire (0001) substrate[J]. J. Cryst Growth, 2010, 312(2): 258-262.
[60] [60] MA D, XU S, TAO H, et al. Investigation of nitridation time on the quality of AlGaN/GaN heterojunction grown on AlN-sputtered sapphire substrate[J]. Materials Letters, 2020, 277: 128395.
[61] [61] Aggarwal V, Ramesh C, Tyagi P, et al. Controlled epitaxial growth of GaN nanostructures on sapphire (11-20) using laser molecular beam epitaxy for photodetector applications[J]. Materials Science in Semiconductor Processing, 2021, 125: 105631.
[62] [62] ZHU Y, LIU X, GE M, et al. Demonstration of GaN-based white LED grown on 4-inch patterned sapphire substrate by MOCVD[J]. Optical Materials, 2021, 112: 110811.
[63] [63] Azman A, Kamarundzaman A, Bakar A, et al. The optimization of n-type and p-type m-plane GaN grown on m-plane sapphire substrate by metal organic chemical vapor deposition[J]. Materials Science in Semiconductor Processing, 2021, 131(5726): 105836.
[65] [65] Fedotov S D, Statsenko V N, Egorov N N, et al. Effect of solid-state epitaxial recrystallization on defect density in ultrathin silicon-on-sapphire layers[J]. Physics of the Solid State, 2019, 61(12): 2353-2358.
[66] [66] GUO Z, CHAO L, WANG Y, et al. Design and experimental research of a temperature compensation system for silicon-on-sapphire pressure sensors[J]. IEEE Sensors Journal, 2017, 17(3): 709-715.
Get Citation
Copy Citation Text
DU Juan, WU Shaohua, KANG Jie, LI Gang, SUN Xing, WU Yingqiang. Optoelectronic Applications of Sapphire Crystal Material[J]. Infrared Technology, 2025, 47(1): 10
Category:
Received: Nov. 29, 2023
Accepted: Feb. 18, 2025
Published Online: Feb. 18, 2025
The Author Email: Shaohua WU (13577018379@163.com)
CSTR:32186.14.