AEROSPACE SHANGHAI, Volume. 42, Issue 2, 186(2025)

CNN-LSTM Based Space Object Recognition Method for Sequence Images

Siyu QI, Huijie ZHAO, Hongzhi JIANG, Xudong LI*, Sihang WANG, and Qi GUO
Author Affiliations
  • Institute of Artificial Intelligence,Beihang University,Beijing100191,China
  • show less
    Figures & Tables(13)
    Architecture of a space object recognition network for sequential images
    Schematic diagram of the single frame feature extraction module design
    Architecture of an LSTM unit
    Schematic diagram of sampling the experimental sample sequence
    Confusion matrix of the validation set of the Top1 model from the noise experiment
    Target image with Label 0
    Target image with Label 1
    Confusion matrix of the validation set of the Top1 model from the attitude experiment
    Comparison of the activation maps for different feature extraction modules
    • Table 1. Parameters for the network training

      View table
      View in Article

      Table 1. Parameters for the network training

      训练轮数学习率权重衰减动量
      200.000 34×10-60.9
    • Table 2. Comparison of the accuracy of noise experiment

      View table
      View in Article

      Table 2. Comparison of the accuracy of noise experiment

      实验方法Top1准确率/%mAP准确率/%
      训练集测试集训练集测试集
      所提方法99.6399.4499.7799.48
      VGG[31]+LSTM99.3599.2799.0599.03
      ResNet34[34]+LSTM98.1083.9293.1565.52
      EfficientNet-b0[35]+LSTM95.4294.1794.6393.26
      ViT16[36]+LSTM96.0294.5195.0293.47
      AlexNet[30]+Attention96.7599.3074.9974.58
    • Table 3. Comparison of the accuracy of randomly sampling attitudes

      View table
      View in Article

      Table 3. Comparison of the accuracy of randomly sampling attitudes

      实验方法Top1准确率/%mAP准确率/%
      训练集测试集训练集测试集
      所提方法96.1994.2794.3693.53
      VGG[31]+LSTM91.2991.1390.5490.47
      ResNet34[34]+LSTM91.0556.6290.5755.19
      EfficientNet-b0[35]+LSTM92.3391.7391.0790.88
      ViT16[36]+LSTM93.1492.2792.2191.07
      AlexNet[30]+Attention88.9583.9487.7381.76
    • Table 4. Comparisons of the recognition time and model size

      View table
      View in Article

      Table 4. Comparisons of the recognition time and model size

      实验方法识别时间/s参数量(Flops)/M
      所提方法0.024283.00
      VGG[31]+LSTM0.0476 011.30
      ResNet34[34]+LSTM0.0701 480.20
      EfficientNet-b0[35]+LSTM0.032435.16
      ViT16[36]+LSTM0.09917 630.20
      AlexNet[30]+Attention0.0422 731.60
    Tools

    Get Citation

    Copy Citation Text

    Siyu QI, Huijie ZHAO, Hongzhi JIANG, Xudong LI, Sihang WANG, Qi GUO. CNN-LSTM Based Space Object Recognition Method for Sequence Images[J]. AEROSPACE SHANGHAI, 2025, 42(2): 186

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Simulation and Analysis

    Received: Jul. 15, 2024

    Accepted: --

    Published Online: May. 26, 2025

    The Author Email:

    DOI:10.19328/j.cnki.2096-8655.2025.02.018

    Topics