Optoelectronic Technology, Volume. 41, Issue 4, 262(2021)

Factors Affecting the Measurement of Perovskite Mobility by Space Charge Limited Current Method

Yongtao HUANG, Shu HU, and Chuanxiang SHENG
Author Affiliations
  • School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, CHN
  • show less
    References(57)

    [1] NREL. Best Research-Cell Efficiency Chart[webpage].

    [2] Milot R L, Eperon G E, Snaith H J et al. Temperature‐dependent charge‐carrier dynamics in CH3NH3PbI3 perovskite thin films[J]. Advanced Functional Materials, 25, 6218-6227(2015).

    [3] Dong Q, Fang Y, Shao Y et al. Electron-hole diffusion lengths>175 μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 347, 967-970(2015).

    [4] Hutter E M, Eperon G E, Stranks S D et al. Charge carriers in planar and meso-structured organic–inorganic perovskites: Mobilities, lifetimes, and concentrations of trap states[J]. The Journal of Physical Chemistry Letters, 6, 3082-3090(2015).

    [5] Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties[J]. Inorganic Chemistry, 52, 9019-9038(2013).

    [6] Yan J, Fu W, Zhang X et al. Highly oriented two-dimensional formamidinium lead iodide perovskites with a small bandgap of 1.51 eV[J]. Materials Chemistry Frontiers, 2, 121-128(2018).

    [7] Zhang X, Ren X, Liu B et al. Stable high efficiency two-dimensional perovskite solar cells via cesium doping[J]. Energy & Environmental Science, 10, 2095-2102(2017).

    [8] Zhao W, Gan X, Ke L et al. 2D multilayered perovskites based on 4-chlorophenylethylamine for solar cell application[J]. Solar Energy, 196, 1-9(2020).

    [9] Adinolfi V, Yuan M, Comin R et al. The In-gap electronic state spectrum of methylammonium lead Iodide single-crystal perovskites[J]. Adv. Mater., 28, 3406-3410(2016).

    [10] Ahn C W, Jo J H, Kim J C et al. Highly ordered lead-free double perovskite halides by design[J]. Journal of Materiomics, 6, 651-660(2020).

    [11] Dong Q, Fang Y, Shao Y et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 347, 967-970(2015).

    [12] Han Q, Bae S H, Sun P et al. Single crystal Formamidinium Lead Iodide (FAPbI3): Insight into the structural, optical, and electrical properties[J]. Adv. Mater., 28, 2253-2258(2016).

    [13] Li P, Zhang Y, Liang C et al. Phase pure 2D perovskite for high-performance 2D-3D heterostructured perovskite solar cells[J]. Adv. Mater., 30(2018).

    [14] Liu N, Liu P, Ren H et al. Probing phase distribution in 2D perovskites for efficient device design[J]. ACS Appl. Mater. Interfaces, 12, 3127-3133(2020).

    [15] Saidaminov M I, Abdelhady A L, Murali B et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization[J]. Nat. Commun., 6, 7586(2015).

    [16] Sajedi Alvar M, Blom P W M, Wetzelaer G A H. Space-charge-limited electron and hole currents in hybrid organic-inorganic perovskites[J]. Nat. Commun., 11, 4023(2020).

    [17] Shi D, Adinolfi V, Comin R et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science, 347, 519-522(2015).

    [18] Zhang Y, Sun M, Zhou N et al. Electronic tunability and mobility anisotropy of quasi-2D perovskite single crystals with varied spacer cations[J]. J Phys. Chem. Lett., 11, 7610-7616(2020).

    [19] Zhumekenov A A, Saidaminov M I, Haque M A et al. Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length[J]. ACS Energy Letters, 1, 32-37(2016).

    [20] Philip A. Electronic processes in ionic crystals (Mott N F; Gurney R W)[J]. Journal of Chemical Education, 18, 249(1941).

    [21] Blakesley J C, Castro F A, Kylberg W et al. Towards reliable charge-mobility benchmark measurements for organic semiconductors[J]. Organic Electronics, 15, 1263-1272(2014).

    [22] Murgatroyd P N. Theory of space-charge-limited current enhanced by Frenkel effect[J]. Journal of Physics D: Applied Physics, 3, 151(1970).

    [23] Zubair M, Ang Y S, Ang L K. Thickness dependence of space-charge-limited current in spatially disordered organic semiconductors[J]. IEEE Transactions on Electron Devices, 65, 3421-3429(2018).

    [24] Ni Z Y, Bao C X, Liu Y et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells[J]. Science, 367, 1352(2020).

    [25] Duijnstee E A, Ball J M, Le Corre V M et al. Toward understanding space-charge limited current measurements on metal halide perovskites[J]. ACS Energy Letters, 5, 376-384(2020).

    [26] Wilson J N, Frost J M, Wallace S K. Dielectric and ferroic properties of metal halide perovskites[J]. APL Materials, 7(2019).

    [27] Almond D P, Bowen C R. An explanation of the photoinduced giant dielectric constant of Lead Halide perovskite solar cells[J]. J Phys. Chem. Lett., 6, 1736-1740(2015).

    [28] Govinda S, Kore B P, Bokdam M et al. Behavior of methylammonium dipoles in MAPbX3 (X = Br and I)[J]. J Phys. Chem. Lett., 8, 4113-4121(2017).

    [29] Jayathissa R, Burns C A. A study of structural and dielectric properties of Ba2+ doped CH3NH3PbI3 crystals[J]. SN Applied Sciences, 2, 1-11(2020).

    [30] Prasad B V, Rao B V, Narsaiah K et al. Dielectric studies of Fe doped SmCrO3 perovskites[J]. IOP Conference Series: Materials Science and Engineering, 73(2015).

    [31] Rayssi C, El Kossi S, Dhahri J et al. Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1-xCo4x/3O3 (0 ≤ x ≤ 0.1)[J]. RSC Advances, 8, 17139-17150(2018).

    [32] Lee L, Baek J, Park K S et al. Wafer-scale single-crystal perovskite patterned thin films based on geometrically-confined lateral crystal growth[J]. Nat. Commun., 8, 15882(2017).

    [33] Liu Z, Qiu L, Juarez-Perez E J et al. Gas-solid reaction based over one-micrometer thick stable perovskite films for efficient solar cells and modules[J]. Nat. Commun., 9, 3880(2018).

    [34] Li M, Cao G et al. Monolithic MAPbI3 films for high-efficiency solar cells via coordination and a heat assisted process[J]. J. Mater. Chem. A, 5, 21313-21319(2017).

    [35] Zhu H, Zhang F, Xiao Y et al. Suppressing defects through thiadiazole derivatives that modulate CH3NH3PbI3 crystal growth for highly stable perovskite solar cells under dark conditions[J]. Journal of Materials Chemistry A, 6, 4971-4980(2018).

    [36] Liu X, Xu C, Lee E C. Chlorobenzene-mediated control of crystallization in perovskite films for high-performance solar cells[J]. ACS Applied Energy Materials, 3, 12291-12297(2020).

    [37] Li J, Huang J, Zhao A et al. An inorganic stable Sn-based perovskite film with regulated nucleation for solar cell application[J]. Journal of Materials Chemistry C, 8, 8840-8845(2020).

    [38] Liu Z, Wang L, Xie X. Improving the performance of inverted two-dimensional perovskite solar cells by adding an anti-solvent into the perovskite precursor[J]. Journal of Materials Chemistry C, 8, 11882-11889(2020).

    [39] Liu G, Xie X, Xu X et al. High-performance inverted two-dimensional perovskite solar cells using non-fullerene acceptor as electron transport layer[J]. Organic Electronics, 62, 189-194(2018).

    [40] Liu G, Liu Z, Zeng F et al. High performance two-dimensional perovskite solar cells based on solvent induced morphology control of perovskite layers[J]. Chemical Physics Letters, 743, 137186(2020).

    [41] Chen S, Shen N, Zhang L et al. Binary organic spacer-based quasi-two-dimensional perovskites with preferable vertical orientation and efficient charge transport for high-performance planar solar cells[J]. Journal of Materials Chemistry A, 7, 9542-9549(2019).

    [42] Yang Y, Liu C, Mahata A et al. Universal approach toward high-efficiency two-dimensional perovskite solar cells via a vertical-rotation process[J]. Energy & Environmental Science, 13, 3093-3101(2020).

    [43] Zhao X, Liu T, Kaplan A B et al. Accessing highly oriented two-dimensional perovskite films via solvent-vapor annealing for efficient and stable solar cells[J]. Nano Letters, 20, 8880-8889(2020).

    [44] Ju D, Jiang X, Xiao H et al. Narrow band gap and high mobility of lead-free perovskite single crystal Sn-doped MA 3 Sb 2 I 9[J]. Journal of Materials Chemistry A, 6, 20753-20759(2018).

    [45] Xiao Z, Yuan Y, Shao Y et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices[J]. Nat. Mater., 14, 193-198(2015).

    [46] Le Corre V M, Duijnstee E A, Tambouli O E L et al. Revealing charge carrier mobility and defect densities in metal halide perovskites via space-charge-limited current measurements[J]. ACS Energy Letters, 6, 1087-1094(2021).

    [47] Sugiyama K, Ishii H, Ouchi Y et al. Dependence of indium–tin⁃oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies[J]. Journal of Applied Physics, 87, 295-298(2000).

    [48] Rohr J A, Moia D, Haque S A et al. Exploring the validity and limitations of the Mott-Gurney law for charge-carrier mobility determination of semiconducting thin-films[J]. Phys. Condens. Matter, 30, 105901(2018).

    [49] Bruyn P D E, Van Rest A H, Wetzelaer G A et al. Diffusion-limited current in organic metal-insulator-metal diodes[J]. Phys. Rev. Lett., 111, 186801(2013).

    [50] Rhr J A. Direct determination of built-in voltages in asymmetric single-carrier devices[J]. Physical Review Applied, 11(2019).

    [51] Wetzelaer G. Improved determination of the mobility and built-in voltage in asymmetric single-carrier devices[J]. Physical Review Applied, 13(2020).

    [52] Rose A. Space-charge-limited currents in solids[J]. Physical Review, 97, 1538-1544(1955).

    [53] Mark P, Helfrich W. Space‐charge‐limited currents in organic crystals[J]. Journal of Applied Physics, 33, 205-215(1962).

    [54] Kirchartz T. Influence of diffusion on space-charge-limited current measurements in organic semiconductors[J]. Beilstein J Nanotechnol., 4, 180-188(2013).

    [55] Murgatroyd P. Theory of space-charge-limited current enhanced by Frenkel effect[J]. Journal of Physics D: Applied Physics, 3, 151(1970).

    [56] Frenkel J. On pre-breakdown phenomena in insulators and electronic semi-conductors[J]. Physical Review, 54, 647(1938).

    [57] Boer R, Morpurgo A F. Influence of surface traps on space-charge limited current[J]. Phys.Rev.B, 72(2005).

    Tools

    Get Citation

    Copy Citation Text

    Yongtao HUANG, Shu HU, Chuanxiang SHENG. Factors Affecting the Measurement of Perovskite Mobility by Space Charge Limited Current Method[J]. Optoelectronic Technology, 2021, 41(4): 262

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research and Trial-manufacture

    Received: Apr. 20, 2021

    Accepted: --

    Published Online: Aug. 3, 2022

    The Author Email:

    DOI:10.19453/j.cnki.1005-488x.2021.04.005

    Topics