Laser & Optoelectronics Progress, Volume. 60, Issue 23, 2306003(2023)

Orbital Angular Momentum Multi-Superposition Identification Method Based on Attention Mechanism

Xu Zhou1,2, Chunyi Chen1,2、*, Haiyang Yu1,2, Xiaolong Ni1, and Xiaojuan Hu1,2
Author Affiliations
  • 1Key Laboratory of Photoelectric Measurement & Control and Optical Information Transfer Technology, Ministry of Education, Changchun University of Science and Technology, Changchun 130022, Jilin, China
  • 2School of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, Jilin, China
  • show less
    References(24)

    [1] Ke X Z, Wang J[M]. Generation, transmission, detection and application of vortex beam, 2-5(2018).

    [2] Ren Y X, Wang Z, Liao P C et al. Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m[J]. Optics Letters, 41, 622-625(2016).

    [3] Wang J, Yang J Y, Fazal I M et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 6, 488-496(2012).

    [4] Li J J. Research on physical layer security of OAM multiplexing communication under atmospheric turbulence channel[D](2019).

    [5] Allen L, Beijersbergen M W, Spreeuw R J et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185-8189(1992).

    [6] Nape I, Sephton B, Huang Y W et al. Enhancing the modal purity of orbital angular momentum photons[J]. APL Photonics, 5, 070802(2020).

    [7] Berry M V. Optical vortices evolving from helicoidal integer and fractional phase steps[J]. Journal of Optics A: Pure and Applied Optics, 6, 259-268(2004).

    [8] Berkhout G C G, Lavery M P J, Courtial J et al. Efficient sorting of orbital angular momentum states of light[J]. Physical Review Letters, 105, 153601(2010).

    [9] Zheng S, Wang J. Measuring orbital angular momentum (OAM) states of vortex beams with annular gratings[J]. Scientific Reports, 7, 40781(2017).

    [10] Huang Z B, Wang P P, Liu J M et al. All-optical signal processing of vortex beams with diffractive deep neural networks[J]. Physical Review Applied, 15, 014037(2021).

    [11] Tian Q H, Li Z, Hu K et al. Turbo-coded 16-ary OAM shift keying FSO communication system combining the CNN-based adaptive demodulator[J]. Optics Express, 26, 27849-27864(2018).

    [12] Doster T, Watnik A T. Machine learning approach to OAM beam demultiplexing via convolutional neural networks[J]. Applied Optics, 56, 3386-3396(2017).

    [13] Wang Z K, Dedo M I, Guo K et al. Efficient recognition of the propagated orbital angular momentum modes in turbulences with the convolutional neural network[J]. IEEE Photonics Journal, 11, 7903614(2019).

    [14] Guo Z Y, Wang Z K, Dedo M I et al. The orbital angular momentum encoding system with radial indices of Laguerre-Gaussian beam[J]. IEEE Photonics Journal, 10, 7906511(2018).

    [15] Zheng C H, Wang T S, Liu Z Q et al. Deep transfer learning method to identify orbital angular momentum beams[J]. Opto-Electronic Engineering, 49, 210409(2022).

    [16] Wang Z K, Guo Z Y. Adaptive demodulation technique for efficiently detecting orbital angular momentum (OAM) modes based on the improved convolutional neural network[J]. IEEE Access, 7, 163633-163643(2019).

    [17] Yin X L, Guo Y L, Cui X Z et al. Method of mode recognition for multi-OAM multiplexing based on convolutional neural network[J]. Journal of Beijing University of Posts and Telecommunications, 42, 47-52(2019).

    [18] Hao Y, Zhao L, Huang T et al. High-accuracy recognition of orbital angular momentum modes propagated in atmospheric turbulences based on deep learning[J]. IEEE Access, 8, 159542-159551(2020).

    [19] Shi C Y, Wei H Y, Jia P et al. Detect the orbital angular momentum of vortex beams after phase distortion based on machine learning[J]. Acta Photonica Sinica, 51, 0151123(2022).

    [20] Ke X Z, Xue P. Generation of orbital angular momentum superpositions and its test[J]. Infrared and Laser Engineering, 47, 0417007(2018).

    [21] Su M Y. Research on optical vortex transmission characteristics and multiplexing technology for optical communication[D](2017).

    [22] Guo Z Y, Gong C F, Liu H J et al. Research advances of orbital angular momentum based optical communication technology[J]. Opto-Electronic Engineering, 47, 190593(2020).

    [23] Hu J, Shen L, Albanie S et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 2011-2023(2020).

    [24] Chen C Y, Yang H M, Ren B et al. Modeling and computer simulation of numerical experiments on laser propagation through atmospheric turbulence[J]. Journal of System Simulation, 30, 2133-2143(2018).

    Tools

    Get Citation

    Copy Citation Text

    Xu Zhou, Chunyi Chen, Haiyang Yu, Xiaolong Ni, Xiaojuan Hu. Orbital Angular Momentum Multi-Superposition Identification Method Based on Attention Mechanism[J]. Laser & Optoelectronics Progress, 2023, 60(23): 2306003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Nov. 18, 2022

    Accepted: Dec. 30, 2022

    Published Online: Dec. 4, 2023

    The Author Email: Chunyi Chen (chenchunyi@hotmail.com)

    DOI:10.3788/LOP223103

    Topics