Optics and Precision Engineering, Volume. 30, Issue 15, 1828(2022)

Optimization of large-aperture micro-nano structure planar optical element

Xinrui CAO, Weiguo LIU, Shun ZHOU, Xueping SUN, and Yechuan ZHU*
Author Affiliations
  • School of Optoelectronic Engineering, Xi'an Technological University, Xi'an710016, China
  • show less
    References(25)

    [1] [1] 1朱业传, 苑伟政, 虞益挺. 表面等离子体平面金属透镜及其应用[J]. 中国光学, 2017, 10(2): 149-163. doi: 10.3788/CO.20171002.0149ZHUY CH, YUANW ZH, YUY T. Planar plasmonic lenses and their applications[J]. Chinese Optics, 2017, 10(2): 149-163. (in Chinese). doi: 10.3788/CO.20171002.0149

    [2] [2] 2范庆斌, 徐挺. 基于电磁超表面的透镜成像技术研究进展[J]. 物理学报, 2017, 66(14): 144208. doi: 10.7498/aps.66.144208FANQ B, XUT. Research progress of imaging technologies based on electromagnetic metasurfaces[J]. Acta Physica Sinica, 2017, 66(14): 144208. (in Chinese). doi: 10.7498/aps.66.144208

    [3] NI X J, EMANI N K, KILDISHEV A V et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 335, 427(2012).

    [4] NI X J, ISHII S, KILDISHEV A V et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses[J]. Light: Science & Applications, 2(2013).

    [5] ZHENG G X, MÜHLENBERND H, KENNEY M et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 10, 308-312(2015).

    [6] HIGH A A, DEVLIN R C, DIBOS A et al. Visible-frequency hyperbolic metasurface[J]. Nature, 522, 192-196(2015).

    [7] KHORASANINEJAD M, CHEN W T, DEVLIN R C et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 352, 1190-1194(2016).

    [8] CHEN W T, ZHU A Y, SANJEEV V et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 13, 220-226(2018).

    [9] WANG S M, WU P C, SU V C et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 8, 187(2017).

    [10] WANG S M, WU P C, SU V C et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 13, 227-232(2018).

    [11] LIN R J, SU V C, WANG S M et al. Achromatic metalens array for full-colour light-field imaging[J]. Nature Nanotechnology, 14, 227-231(2019).

    [12] DECKER M, CHEN W T, NOBIS T et al. Imaging performance of polarization-insensitive metalenses[J]. ACS Photonics, 6, 1493-1499(2019).

    [13] PARK J S, ZHANG S, SHE A et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography[J]. Nano Letters, 19, 8673-8682(2019).

    [14] CHEN W T, ZHU A Y, SISLER J et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures[J]. Nature Communications, 10, 355(2019).

    [15] ZUO H J, CHOI D Y, GAI X et al. High-efficiency all-dielectric metalenses for mid-infrared imaging[J]. Advanced Optical Materials, 5, 1700585(2017).

    [16] ZHOU H P, CHEN L, SHEN F et al. Broadband achromatic metalens in the midinfrared range[J]. Physical Review Applied, 11(2019).

    [17] TANRIOVER I, DEMIR H V. Broad-band polarization-insensitive all-dielectric metalens enabled by intentional off-resonance waveguiding at mid-wave infrared[J]. Applied Physics Letters, 114(2019).

    [18] CHENG Q Q, MA M L, YU D et al. Broadband achromatic metalens in terahertz regime[J]. Science Bulletin, 64, 1525-1531(2019).

    [19] LI H M, XIAO X J, FANG B et al. Bandpass filter-integrated multiwavelength achromatic Metalens[J]. Photonics Research, 9, 1384-1390(2021).

    [20] GROEVER B, CHEN W T, CAPASSO F. Meta-lens doublet in the visible region[J]. Nano Letters, 17, 4902-4907(2017).

    [21] ARBABI E, ARBABI A, KAMALI S M et al. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 9, 812(2018).

    [22] AFRIDI A, CANET-FERRER J, PHILIPPET L et al. Electrically driven varifocal silicon metalens[J]. ACS Photonics, 5, 4497-4503(2018).

    [23] ZHU Y, YUAN W, LI W et al. TE-polarized design for metallic slit lenses: a way to deep-subwavelength focusing over a broad wavelength range[J]. Optics Letters, 43, 206-209(2018).

    [24] ZHU Y C, ZHOU S, WANG Z H et al. Investigation on super-resolution focusing performance of a TE-polarized nanoslit-based two-dimensional lens[J]. Nanomaterials, 10, 3(2019).

    [25] SHE A, ZHANG S, SHIAN S et al. Large area metalenses: design, characterization, and mass manufacturing[J]. Optics Express, 26, 1573-1585(2018).

    Tools

    Get Citation

    Copy Citation Text

    Xinrui CAO, Weiguo LIU, Shun ZHOU, Xueping SUN, Yechuan ZHU. Optimization of large-aperture micro-nano structure planar optical element[J]. Optics and Precision Engineering, 2022, 30(15): 1828

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Design,Fabrication and Application of Planar Optical Elements

    Received: Dec. 7, 2021

    Accepted: --

    Published Online: Sep. 7, 2022

    The Author Email: Yechuan ZHU (zyc_xatu@126.com)

    DOI:10.37188/OPE.20223015.1828

    Topics