Journal of Innovative Optical Health Sciences, Volume. 12, Issue 4, 1930006(2019)

Artificial intelligence-assisted light control and computational imaging through scattering media

Shengfu Cheng1,2, Huanhao Li1, Yunqi Luo3, Yuanjin Zheng3, and Puxiang Lai1、*
Author Affiliations
  • 1Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong SAR
  • 2College of Material Science and Engineering, Sichuan University, Sichuan, P. R. China
  • 3School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
  • show less
    References(114)

    [1] [1] A. P. Mosk, A. Lagendijk, G. Lerosey, M. Fink, “Controlling waves in space and time for imaging and focusing in complex media," Nat. Photon. 6(5), 283–292 (2012).

    [2] [2] J. H. Park, Z. P. Yu, K. Lee, P. X. Lai, Y. Park, “Perspective: Wavefront shaping techniques for controlling multiple light scattering in biological tissues: Toward in vivo applications," Apl. Photon. 3(10), 100901 (2018).

    [3] [3] S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media," Phys. Rev. Lett. 104(10), 100601 (2010).

    [4] [4] R. Horstmeyer, H. W. Ruan, C. H. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue," Nat. Photon. 9(9), 563–571 (2015).

    [5] [5] I. M. Vellekoop, “Feedback-based wavefront shaping," Opt. Exp. 23(9), 12189–12206 (2015).

    [6] [6] I. M. Vellekoop, A. P. Mosk, “Focusing coherent light through opaque strongly scattering media," Opt. Lett. 32(16), 2309–2311 (2007).

    [7] [7] A. Forbes, A. Dudley, M. McLaren, “Creation and detection of optical modes with spatial light modulators," Adv. Opt. Photon. 8(2), 200–227 (2016).

    [8] [8] H. Yu, J. Park, K. Lee, J. Yoon, K. Kim, S. Lee, Y. Park, “Recent advances in wavefront shaping techniques for biomedical applications," Current Appl. Phys. 15(5), 632–641 (2015).

    [9] [9] P. Lai, L. Wang, J. W. Tay, L. V. Wang, “Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media," Nat. Photon. 9(2), 126–132 (2015).

    [10] [10] T. K. Cizmar, K. Dholakia, “Shaping the light transmission through a multimode optical fibre: Complex transformation analysis and applications in biophotonics," Opt. Exp. 19(20), 18871–18884 (2011).

    [11] [11] I. N. Papadopoulos, S. Farahi, C. Moser, D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation," Opt. Exp. 20(10), 10583–10590 (2012).

    [12] [12] S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, “Image transmission through an opaque material," Nat. Commun. 1(6), 81 (2010).

    [13] [13] Z. P. Yu, H. H. Li, P. X. Lai, “Wavefront shaping and its application to enhance photoacoustic imaging," Appl. Sci. 7(12), 1320 (2017).

    [14] [14] M. Cui, C. H. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation," Opt. Exp. 18(4), 3444–3455 (2010).

    [15] [15] C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle," Opt. Exp. 18(20), 20723–20731 (2010).

    [16] [16] Y. M. Wang, B. Judkewitz, C. A. DiMarzio, C. H. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light," Nat. Commun. 3(1), 928 (2012).

    [17] [17] P. Lai, X. Xu, H. Liu, Y. Suzuki, L. V. Wang, “Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media," J. Biomed. Opt. 16(8), 080505 (2011).

    [18] [18] X. Xu, H. Liu, L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media," Nat. Photon. 5(3), 154–157 (2011).

    [19] [19] Z. Yu, J. Huangfu, F. Zhao, M. Xia, X. Wu, X. Niu, D. Li, P. Lai, D. Wang, “Time-reversed magnetically controlled perturbation (TRMCP) optical focusing inside scattering media," Sci. Rep. 8(1), 2927 (2018).

    [20] [20] Z. Yu, M. Xia, H. Li, T. Zhong, F. Zhao, H. Deng, Z. Li, D. Li, D. Wang, P. Lai, “Implementation of digital optical phase conjugation with embedded calibration and phase rectification," Sci. Rep. 9(1), 1537 (2019).

    [21] [21] B. Blochet, L. Bourdieu, S. Gigan, “Focusing light through dynamical samples using fast continuous wavefront optimization," Opt. Lett. 42(23), 4994–4997 (2017).

    [22] [22] Y. Liu, C. Ma, Y. C. Shen, J. H. Shi, L. H. V. Wang, “Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation," Optica 4(2), 280–288 (2017).

    [23] [23] Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, L. V. Wang, “Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light," Nat. Commun. 6(1), 5904 (2015).

    [24] [24] D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments," Opt. Exp. 20(5), 4840–4849 (2012).

    [25] [25] J. W. Tay, P. X. Lai, Y. Suzuki, L. V. Wang, “Ultrasonically encoded wavefront shaping for focusing into random media," Sci. Rep. 4(1), 3918 (2014).

    [26] [26] A. Boniface, M. Mounaix, B. Blochet, R. Piestun, S. Gigan, “Transmission-matrix-based point-spreadfunction engineering through a complex medium," Optica 4(1), 54–59 (2017).

    [27] [27] I. M. Vellekoop, A. P. Mosk, “Phase control algorithms for focusing light through turbid media," Opt. Commun. 281(11), 3071–3080 (2008).

    [28] [28] R. Horisaki, R. Takagi, J. Tanida, “Learning-based focusing through scattering media," Appl. Opt. 56(15), 4358–4362 (2017).

    [29] [29] Y. Guan, O. Katz, E. Small, J. Zhou, Y. Silberberg, “Polarization control of multiply scattered light through random media by wavefront shaping," Opt. Lett. 37(22), 4663–4665 (2012).

    [30] [30] G. D. Bruce, L. O'Donnell, M. Chen, K. Dholakia, “Overcoming the speckle correlation limit to achieve a fiber wavemeter with attometer resolution," Opt. Lett. 44(6), 1367–1370 (2019).

    [31] [31] N. K. Metzger, R. Spesyvtsev, G. D. Bruce, B. Miller, G. T. Maker, G. Malcolm, M. Mazilu, K. Dholakia, “Harnessing speckle for a sub-femtometre resolved broadband wavemeter and laser stabilization," Nat. Commun. 8, 15610 (2017).

    [32] [32] C. W. Hsu, S. F. Liew, A. Goetschy, H. Cao, A. Douglas Stone, “Correlation-enhanced control of wave focusing in disordered media," Nat. Phys. 13(5), 497–502 (2017).

    [33] [33] Z. Shi, M. Davy, A. Z. Genack, “Statistics and control of waves in disordered media," Opt. Exp. 23(9), 12293–12320 (2015).

    [34] [34] M. Davy, Z. Shi, J. Park, C. Tian, A. Z. Genack, “Universal structure of transmission eigenchannels inside opaque media," Nat. Commun. 6(1), 6893 (2015).

    [35] [35] S. F. Liew, S. M. Popoff, A. P. Mosk, W. L. Vos, H. Cao, “Transmission channels for light in absorbing random media: From diffusive to ballisticlike transport," Phys. Rev. B 89(22), 224202 (2014).

    [36] [36] W. Choi, A. P. Mosk, Q. H. Park, W. Choi, “Transmission eigenchannels in a disordered medium," Phys. Rev. B 83(13), 134207 (2011).

    [37] [37] X. Tao, D. Bodington, M. Reinig, J. Kubby, “Highspeed scanning interferometric focusing by fast measurement of binary transmission matrix for channel demixing," Opt. Exp. 23(11), 14168–14187 (2015).

    [38] [38] S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan, “Image transmission through an opaque material," Nat. Commun. 1(6), 81 (2010).

    [39] [39] Y. Z. Li, Y. J. Xue, L. Tian, “Deep speckle correlation: A deep learning approach toward scalable imaging through scattering media," Optica 5(10), 1181–1190 (2018).

    [40] [40] H. W. Babcock, “Adaptive optics revisited," Science 249(4966), 253–257 (1990).

    [41] [41] E. Pastrana, “Adaptive optics for biological imaging," Nat. Meth. 8(1), 45 (2011).

    [42] [42] M. J. Booth, “Adaptive optics in microscopy," Philosophic. Trans. Roy. Soc. a-Math. Phys. Eng. Sci. 365(1861), 2829–2843 (2007).

    [43] [43] M. J. Booth, “Adaptive optical microscopy: The ongoing quest for a perfect image," Light-Sci. Appl. 3(4), e165–e165 (2014).

    [44] [44] P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, J. Carroll, “Adaptive optics retinal imaging: Emerging clinical applications," Optomet. Vision Sci. 87(12), 930–941 (2010).

    [45] [45] M. Lombardo, S. Serrao, N. Devaney, M. Parravano, G. Lombardo, “Adaptive optics technology for high-resolution retinal imaging," Sensors 13(1), 334–366 (2013).

    [46] [46] L. J. Zhu, P. C. Sun, D. U. Bartsch, W. R. Freeman, Y. Fainman, “Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation," Appl. Opt. 38(1), 168–176 (1999).

    [47] [47] J. Xu, H. W. Ruan, Y. Liu, H. J. Zhou, C. H. Yang, “Focusing light through scattering media by transmission matrix inversion," Opt. Exp. 25(22), 27234–27246 (2017).

    [48] [48] A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, R. Piestun, “Real-time resilient focusing through a bending multimode fiber," Opt. Exp. 21(10), 12881–12887 (2013).

    [49] [49] D. B. Conkey, A. M. Caravaca-Aguirre, R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media," Opt. Exp. 20(2), 1733–1740 (2012).

    [50] [50] Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, W. Choi, “Scannerfree and wide-field endoscopic imaging by using a single multimode optical fiber," Phys. Rev. Lett. 109(20), 203901 (2012).

    [51] [51] D. Loterie, S. Farahi, I. Papadopoulos, A. Goy, D. Psaltis, C. Moser, “Digital confocal microscopy through a multimode fiber," Opt. Exp. 23(18), 23845–23858 (2015).

    [52] [52] J. W. Goodman, R. W. Lawrence, “Digital image formation from electronically detected holograms," Appl. Phys. Lett. 11(3), 77 (1967).

    [53] [53] N. Streibl, “Phase imaging by the transport-equation of intensity," Opt. Commun. 49(1), 6–10 (1984).

    [54] [54] R. W. Gerchberg, W. O. Saxton, “Practical algorithm for determination of phase from image and diffraction plane pictures," Optik 35(2), 237 (1972).

    [55] [55] J. R. Fienup, “Reconstruction of an object from modulus of its Fourier-transform," Opt. Lett. 3(1), 27–29 (1978).

    [56] [56] C. M. Bishop, Pattern Recognition and Machine Learning (Springer-Verlag, New York, NY, USA, 2006).

    [57] [57] A. Turpin, I. Vishniakou, J. D. Seelig, “Light scattering control in transmission and reflection with neural networks," Opt. Exp. 26(23), 30911–30929 (2018).

    [58] [58] Y. Luo, H. Li, R. Zhang, P. Lai, Y. Zheng, “Deep learning assisted optical wavefront shaping in disordered medium," in Adaptive Optics and Wavefront Control for Biological Systems V, Proceedings, Vol. 10886, p. 1088612 (San Francisco: SPIE, 2019).

    [59] [59] S. Li, M. Deng, J. Lee, A. Sinha, G. Barbastathis, “Imaging through glass diffusers using densely connected convolutional networks," Optica 5(7), 803–813 (2018).

    [60] [60] L. Meng, W. H., Li. Guowei, Situ. Guohai, “Exploit imaging through opaque wall via deep learning," arXiv:1708.07881.

    [61] [61] A. Sinha, J. Lee, S. Li, G. Barbastathis, “Lensless computational imaging through deep learning," Optica 4(9), 1117–1125 (2017).

    [62] [62] J. Yoon, K. Lee, J. Park, Y. Park, “Measuring optical transmission matrices by wavefront shaping," Opt. Exp. 23(8), 10158–10167 (2015).

    [63] [63] H. Yu, K. Lee, Y. Park, “Ultrahigh enhancement of light focusing through disordered media controlled by mega-pixel modes," Opt. Exp. 25(7), 8036–8047 (2017).

    [64] [64] D. A. Montera, B. M. Welsh, M. C. Roggemann, D. W. Ruck, “Prediction of wave-front sensor slope measurements with artificial neural networks," Appl. Opt. 36(3), 675–681 (1997).

    [65] [65] T. K. Barrett, D. G. Sandler, “Artificial neural network for the determination of hubble space telescope aberration from stellar images," Appl. Opt. 32(10), 1720–1727 (1993).

    [66] [66] S. W. Paine, J. R. Fienup, “Machine learning for improved image-based wavefront sensing," Opt. Lett. 43(6), 1235–1238 (2018).

    [67] [67] R. Swanson, M. Lamb, C. Correia, S. Sivanandam, K. Kutulakos, “Wavefront reconstruction and prediction with convolutional neural networks," Adapt. Opt. Syst. VI, Proc. Vol. 10703, p. 107031F (2018).

    [68] [68] P. C. McGuire, D. G. Sandler, M. Lloyd-Hart, T. A. Rhoadarmer, “Adaptive optics: Neural network wavefront sensing, reconstruction, and prediction," Scientific Applications of Neural Nets, Vol. 522, pp. 97–138 (1999).

    [69] [69] G. S. Chundi, M. Lloyd-Hart, M. K. Sundareshan, “Training multilayer perceptron and radial basis function neural networks for wavefront sensing and restoration of turbulence-degraded imagery," Proc. 2004 IEEE International Joint Conf. Neural Networks, Vol. 1–4, pp. 2117–2122 (Budapest, 2004).

    [70] [70] J. F. Bille, T. Nirmaier, G. Pudasaini, C. A. Diez, “Neural network modal wavefront reconstruction for Hartmann-Shack wavefront sensors," Investigat. Ophthalmol. Visual Sci. 45(13), 2839 (2004).

    [71] [71] J. Osborn, D. Guzman, F. J. D. Juez, A. G. Basden, T. J. Morris, E. Gendron, T. Butterley, R. M. Myers, A. Guesalaga, F. S. Lasheras, M. G. Victoria, M. L. S. Rodriuez, D. Gratadour, G. Rousset, “First on-sky results of a neural network based tomographic reconstructor: Carmen on Canary," Adapt. Opt. Syst. Iv 9148 (2014).

    [72] [72] S. L. S. Gomez, C. Gonzalez-Gutierrez, E. D. Alonso, J. D. S. Rodriguez, M. L. S. Rodriguez, J. C. Landeira, A. Basden, J. Osborn, “Improving adaptive optics reconstructions with a deep learning approach," Hybrid Artific. Intell. Syst. (Hais 2018) 1087074–1087083 (2018).

    [73] [73] H. M. Ma, H. Q. Liu, Y. Qiao, X. H. Li, W. Zhang, “Numerical study of adaptive optics compensation based on Convolutional Neural Networks," Opt. Commun. 433, 283–289 (2019).

    [74] [74] G. Dai, “Modal compensation of atmospheric-turbulence with the use of zernike polynomials and Karhunen-Loeve functions," J. Opt. Soc. Am. Opt. Image Sci. Vision 12(10), 2182–2193 (1995).

    [75] [75] R. J. Noll, “Zernike polynomials and atmosphericturbulence," J. Opt. Soc. Am. 66(3), 207–211 (1976).

    [76] [76] E. Chaigneau, A. J. Wright, S. P. Poland, J. M. Girkin, R. A. Silver, “Impact of wavefront distortion and scattering on 2-photon microscopy in mammalian brain tissue," Opt. Exp. 19(23), 22755–22774 (2011).

    [77] [77] N. Jia, T. R. Sato, E. Betzig, “Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex," Proc. National Acad. Sci. United States of America 109(1), 22–27 (2012).

    [78] [78] X. D. Tao, B. Fernandez, O. Azucena, M. Fu, D. Garcia, Y. Zuo, D. C. Chen, J. Kubby, “Adaptive optics confocal microscopy using direct wavefront sensing," Opt. Lett. 36(7), 1062–1064 (2011).

    [79] [79] J. L. Zhao, F. Xiao, J. Kang, H. X. Zhao, Y. Dai, Y. D. Zhang, “Statistical analysis of ocular monochromatic aberrations in Chinese population for adaptive optics ophthalmoscope design," J. Innovative Opt. Health Sci. 10(1), 1650038 (2017).

    [80] [80] X. Fei, J. L. Zhao, H. X. Zhao, D. Yun, Y. D. Zhang, “Deblurring adaptive optics retinal images using deep convolutional neural networks," Biomed. Opt. Exp. 8(12), 5675–5687 (2017).

    [81] [81] J. Arines, “Partially compensated deconvolution from wavefront sensing images of the eye fundus," Opt. Commun. 284(6), 1548–1552 (2011).

    [82] [82] J. B. Sibarita, “Deconvolution microscopy," Microscopy Techniq., in Advances in Biochemical Engineering, J. Rietdorf (eds.), Vol. 95 (Springer, Berlin, Heidelberg, 2005), pp. 201–243.

    [83] [83] L. L. Blanco, M. Mugnier, “Marginal blind deconvolution of adaptive optics retinal images," Opt. Exp. 19(23), 23227–23239 (2011).

    [84] [84] A. Lazareva, M. Asad, G. Slabaugh, “Learning to deblur adaptive optics retinal images," Image Anal. Recognition, Iciar 2017, pp. 10317497–10317506 (Montreal, 2017).

    [85] [85] K. C. Kwon, K. H. Kwon, M. U. Erdenebat, Y. L. Piao, Y. T. Lim, M. Y. Kim, N. Kim, “Resolutionenhancement for an integral imaging microscopy using deep learning," IEEE Photonic. J. 11(1), 1–12 (2019).

    [86] [86] Y. Li, F. Xu, F. Zhang, P. Y. Xu, M. S. Zhang, M. Fan, L. H. Li, X. Gao, R. M. Han, “DLBI: Deep learning guided Bayesian inference for structure reconstruction of super-resolution fluorescence microscopy," Bioinformatics 34(13), 284–294 (2018).

    [87] [87] T. Y. Zhou, J. W. Luo, X. Liu, “Deep learning for super-resolution localization microscopy," Optics in Health Care and Biomedical Optics Viii, p. 10820 (2018).

    [88] [88] Y. Rivenson, Z. Gorocs, H. Gunaydin, Y. B. Zhang, H. D. Wang, A. Ozcan, “Deep learning microscopy," Optica 4(11), 1437–1443 (2017).

    [89] [89] Y. C. He, W. Z. Xu, Y. Zhi, R. Tyagi, Z. Hu, G. Cao, “Rapid bacteria identification using structured illumination microscopy and machine learning," J. Innovative Opt. Health Sci. 11(1), 1850007 (2018).

    [90] [90] Y. C. Wu, Y. Rivenson, Y. B. Zhang, Z. S. Wei, H. Gunaydin, X. Lin, A. Ozcan, “Extended depthof-field in holographic imaging using deep-learningbased autofocusing and phase recovery," Optica 5(6), 704–710 (2018).

    [91] [91] S. Liu, Q. S. Lian, Y. Qing, Z. P. Xu, “Automatic phase aberration compensation for digital holographic microscopy based on phase variation minimization," Opt. Lett. 43(8), 1870–1873 (2018).

    [92] [92] K. F. Tehrani, J. Q. Xu, P. Kner, “Wavefront correction using machine learning methods for single molecule localization microscopy," Adaptive Optics and Wavefront Control for Biological Systems, p. 9335 (2015).

    [93] [93] V. Ntziachristos, “Going deeper than microscopy: The optical imaging frontier in biology," Nat. Meth. 7(8), 603–614 (2010).

    [94] [94] R. V. Vinu, K. Kim, A. S. Somkuwar, Y. Park, R. K. Singh, “Imaging through scattering media using digital holography," Opt. Commun. 439, 218–223 (2019).

    [95] [95] Z. Yaqoob, D. Psaltis, M. S. Feld, C. H. Yang, “Optical phase conjugation for turbidity suppression in biological samples," Nat. Photon. 2(2), 110–115 (2008).

    [96] [96] Y. Z. Zhang, G. H. Situ, G. Pedrini, D. Y. Wang, B. Javidi, W. Osten, “Application of short-coherence lensless Fourier-transform digital holography in imaging through diffusive medium," Opt. Commun. 286, 56–59 (2013).

    [97] [97] J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk, “Non-invasive imaging through opaque scattering layers," Nature 491(7423), 232–234 (2012).

    [98] [98] O. Katz, P. Heidmann, M. Fink, S. Gigan, “Noninvasive single-shot imaging through scattering layers and around corners via speckle correlations," Nat. Photon. 8(10), 784–790 (2014).

    [99] [99] L. Moreaux, O. Sandre, M. Blanchard-Desce, J. Mertz, “Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy," Opt. Lett. 25(5), 320–322 (2000).

    [100] [100] S. W. Hell, J. Wichmann, “Breaking the diffraction resolution limit by stimulated-emission - stimulatedemission-depletion fluorescence microscopy," Opt. Lett. 19(11), 780–782 (1994).

    [101] [101] T. Wilson, “Optical sectioning in fluorescence microscopy," J. Microscopy 242(2), 111–116 (2011).

    [102] [102] R. Horisaki, R. Takagi, J. Tanida, “Learning-based imaging through scattering media," Opt. Exp. 24(13), 13738–13743 (2016).

    [103] [103] S. Li, A. Sinha, J. Lee, G. Barbastathis, “Quantitative phase microscopy using deep neural networks," Quantitative Phase Imaging IV, Vol. 10503 (San Francisco: SPIE, 2018).

    [104] [104] E. Spitz, A. Werts, “Transmission des images a travers une fibre optique," Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie B 264(14), 1015 (1967).

    [105] [105] I. N. Papadopoulos, S. Farahi, C. Moser, D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber," Biomed. Opt. Exp. 4(2), 260–270 (2013).

    [106] [106] E. R. Andresen, G. Bouwmans, S. Monneret, H. Rigneault, “Toward endoscopes with no distal optics: Video-rate scanning microscopy through a fiber bundle," Opt. Lett. 38(5), 609–611 (2013).

    [107] [107] S. Aisawa, K. Noguchi, T. Matsumoto, “Remote image classification through multimode optical fiber using a neural network," Opt. Lett. 16(9), 645–647 (1991).

    [108] [108] R. K. Marusarz, M. R. Sayeh, “Neural networkbased multimode fiber-optic information transmission," Appl. Opt. 40(2), 219–227 (2001).

    [109] [109] R. Takagi, R. Horisaki, J. Tanida, “Object recognition through a multi-mode fiber," Opt. Rev. 24(2), 117–120 (2017).

    [110] [110] B. Rahmani, D. Loterie, G. Konstantinou, D. Psaltis, C. Moser, “Multimode optical fiber transmission with a deep learning network," Light-Science Appl. 7(1), 69 (2018).

    [111] [111] N. Borhani, E. Kakkava, C. Moser, D. Psaltis, “Learning to see through multimode fibers," Optica 5(8), 960–966 (2018).

    [112] [112] P. Fan, Z. T., Su. Lei, “Deep learning the high variability and randomness inside multimode fibres" (2018), arXiv:1807.09351.

    [113] [113] K. M. He, X. Y. Zhang, S. Q. Ren, J. Sun, “Deep residual learning for image recognition," 2016 IEEE Conf. Computer Vision and Pattern Recognition (Cvpr), pp. 770–778 (Las Vegas, 2016).

    [114] [114] G. Huang, Z. Liu, L. van der Maaten, K. Q. Weinberger, “Densely connected convolutional networks," 30th IEEE Conf. Computer Vision and Pattern Recognition (Cvpr 2017), pp. 2261–2269 (Honolulu, 2017).

    Tools

    Get Citation

    Copy Citation Text

    Shengfu Cheng, Huanhao Li, Yunqi Luo, Yuanjin Zheng, Puxiang Lai. Artificial intelligence-assisted light control and computational imaging through scattering media[J]. Journal of Innovative Optical Health Sciences, 2019, 12(4): 1930006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: May. 9, 2019

    Accepted: Jun. 23, 2019

    Published Online: Sep. 3, 2019

    The Author Email: Puxiang Lai (puxiang.lai@polyu.edu.hk)

    DOI:10.1142/s1793545819300064

    Topics