Chinese Journal of Lasers, Volume. 51, Issue 7, 0701021(2024)

Interference Suppression and Frequency-Locking Circuit Design in Ultra-Stable Laser Systems

Rui Xiao1,2, Beifei Yan1,2, Zhendi Cai1,2, Pengcheng Fang1, Yanqi Xu1, Yan Wang1, Huanyao Sun1, and Qunfeng Chen1、*
Author Affiliations
  • 1Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, Hubei , China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(27)

    [1] Ludlow A D, Boyd M M, Ye J et al. Optical atomic clocks[J]. Reviews of Modern Physics, 87, 637-701(2015).

    [2] Brewer S M, Chen J S, Hankin A M et al. 27Al+ quantum-logic clock with a systematic uncertainty below 10-18[J]. Physical Review Letters, 123, 033201(2019).

    [3] Oelker E, Hutson R B, Kennedy C J et al. Demonstration of 4.8×10-17 stability at 1 s for two independent optical clocks[J]. Nature Photonics, 13, 714-719(2019).

    [4] Adhikari R X. Gravitational radiation detection with laser interferometry[J]. Reviews of Modern Physics, 86, 121-151(2014).

    [5] Lucamarini M, Yuan Z L, Dynes J F et al. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters[J]. Nature, 557, 400-403(2018).

    [6] Chen J P, Zhang C, Liu Y et al. Sending-or-not-sending with independent lasers: secure twin-field quantum key distribution over 509 km[J]. Physical Review Letters, 124, 070501(2020).

    [7] Drever R W P, Hall J L, Kowalski F V et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 31, 97-105(1983).

    [8] Numata K, Kemery A, Camp J. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities[J]. Physical Review Letters, 93, 250602(2004).

    [9] Kessler T, Legero T, Sterr U. Thermal noise in optical cavities revisited[J]. Journal of the Optical Society of America B, 29, 178-184(2011).

    [10] Häfner S, Falke S, Grebing C et al. 8×10-17 fractional laser frequency instability with a long room-temperature cavity[J]. Optics Letters, 40, 2112-2115(2015).

    [11] Kessler T, Hagemann C, Grebing C et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity[J]. Nature Photonics, 6, 687-692(2012).

    [12] Wiens E, Chen Q F, Ernsting I et al. Silicon single-crystal cryogenic optical resonator[J]. Optics Letters, 39, 3242-3245(2014).

    [13] Matei D G, Legero T, Häfner S et al. 1.5 μm lasers with sub-10 mHz linewidth[J]. Physical Review Letters, 118, 263202(2017).

    [14] He L L, Zhang J X, Wang Z Y et al. Ultra-stable cryogenic sapphire cavity laser with an instability reaching 2×10-16 based on a low vibration level cryostat[J]. Optics Letters, 48, 2519-2522(2023).

    [15] Cole G D, Zhang W, Martin M J et al. Tenfold reduction of Brownian noise in high-reflectivity optical coatings[J]. Nature Photonics, 7, 644-650(2013).

    [16] Whittaker E A, Gehrtz M, Bjorklund G C. Residual amplitude modulation in laser electro-optic phase modulation[J]. Journal of the Optical Society of America B, 2, 1320-1326(1985).

    [17] Wong N C, Hall J L. Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection[J]. Journal of the Optical Society of America B, 2, 1527-1533(1985).

    [18] Zhang W, Martin M J, Benko C et al. Reduction of residual amplitude modulation to 1×10-6 for frequency modulation and laser stabilization[J]. Optics Letters, 39, 1980-1983(2014).

    [19] Li L F, Shen H, Bi J et al. Analysis of frequency noise in ultra-stable optical oscillators with active control of residual amplitude modulation[J]. Applied Physics B, 117, 1025-1033(2014).

    [20] Tai Z Y, Yan L L, Zhang Y Y et al. Electro-optic modulator with ultra-low residual amplitude modulation for frequency modulation and laser stabilization[J]. Optics Letters, 41, 5584-5587(2016).

    [21] Yao B, Chen Q F, Chen Y J et al. 280 mHz linewidth DBR fiber laser based on PDH frequency stabilization with ultrastable cavity[J]. Chinese Journal of Lasers, 48, 0501014(2021).

    [22] Black E D. An introduction to Pound-Drever-Hall laser frequency stabilization[J]. American Journal of Physics, 69, 79-87(2001).

    [23] Chen X T, Jiang Y Y, Li B et al. Laser frequency instability of 6×10-16 using 10-cm-long cavities on a cubic spacer[J]. Chinese Optics Letters, 18, 030201(2020).

    [24] Argence B, Prevost E, Lévèque T et al. Prototype of an ultra-stable optical cavity for space applications[J]. Optics Express, 20, 25409-25420(2012).

    [25] Chen Q F, Nevsky A, Cardace M et al. A compact, robust, and transportable ultra-stable laser with a fractional frequency instability of 1×10-15[J]. Review of Scientific Instruments, 85, 113107(2014).

    [26] Tao B K, Chen Q F. A vibration-insensitive-cavity design holds impact of higher than 100 g[J]. Applied Physics B, 124, 228(2018).

    [27] Xiao R, Xu Y Q, Wang Y et al. Transportable 30 cm optical cavity based ultrastable lasers with beating instability of 2×10-16[J]. Applied Physics B, 128, 220(2022).

    Tools

    Get Citation

    Copy Citation Text

    Rui Xiao, Beifei Yan, Zhendi Cai, Pengcheng Fang, Yanqi Xu, Yan Wang, Huanyao Sun, Qunfeng Chen. Interference Suppression and Frequency-Locking Circuit Design in Ultra-Stable Laser Systems[J]. Chinese Journal of Lasers, 2024, 51(7): 0701021

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Sep. 14, 2023

    Accepted: Nov. 8, 2023

    Published Online: Mar. 29, 2024

    The Author Email: Chen Qunfeng (qfchen@apm.ac.cn)

    DOI:10.3788/CJL231206

    CSTR:32183.14.CJL231206

    Topics