Laser & Optoelectronics Progress, Volume. 61, Issue 12, 1211001(2024)

Reconstruction Method for Optical Tomography Based on Generative Adversarial Network

Yiting Xu1, Huajun Li1、*, Yingkuang Zhu1, Lianjie Chen1, and Youhu Zhang2
Author Affiliations
  • 1School of Automation, Hangzhou Dianzi University, Hangzhou 310016, Zhejiang, China
  • 2Hangzhou Zhongtai Cryogenic Technology Corporation, Hangzhou 311402, Zhejiang, China
  • show less
    Figures & Tables(18)
    One ray projection diagram
    Flowchart of the LBP-Pix2Pix reconstruction algorithm
    Generator of the Pix2Pix
    Discriminator of the Pix2Pix
    Five specific distributions. (a) Single rectangle distribution; (b) single circle distribution; (c) double circle distribution; (d) triple circle distribution; (e) cross-distribution
    The optimized optical tomographic sensor structure
    Trends of equivalent cross entropy. (a) Equivalent cross-entropy of the generator; (b) equivalent cross-entropy of the discriminator
    The images reconstructed by a generator in different iterations
    Reconstruction images of the four methods. (a) (e) (i) (m) (q) Reconstruction images of LBP; (b) (f) (j) (n) (r) reconstruction images of Landweber; (c) (g) (k) (o) (s) reconstruction images of U-Net; (d) (h) (l) (p) (t) reconstruction images of LBP-Pix2Pix
    The reconstruction errors of four methods
    • Table 1. Parameters in training Pix2Pix model

      View table

      Table 1. Parameters in training Pix2Pix model

      ParameterInput image sizeCrop sizeEpochBatch sizeLearning rateMomentum β1Momentum β2L1 weighted term λ
      Value256×256×3224×224×32310.00020.50.999100
    • Table 2. Parameters of different absorption coefficient distributions in the dataset

      View table

      Table 2. Parameters of different absorption coefficient distributions in the dataset

      Absorption coefficient distributionRandom circleRandom rectangleRandom cross
      DiameterCenter coordinatesLength and widthThe lower-left coordinatesThe width of the whole crossWidth of the intersection
      Range of parameter20,40][-30,30]1030[-20,20]30,40]1020
    • Table 3. Parameters of simulation experiment

      View table

      Table 3. Parameters of simulation experiment

      ParameterUniformity coefficient SuThe divergence angle of the emitter θ /radThe number of emitters and receiversThe diameter of the region of interest /mmThe number of pixels in the region of interestThe size of each pixel /mm
      Value0.2881.62510018602
    • Table 4. ERIE of other methods

      View table

      Table 4. ERIE of other methods

      Methodσ
      LBP0.45860.47590.39780.34180.41260.0596
      Landweber0.15400.16360.16440.24500.30870.0680
      U-Net0.12260.22130.28470.31960.15330.0782
      LBP-Pix2Pix0.05200.10370.13150.12060.11770.0519
    • Table 5. CICC of different methods

      View table

      Table 5. CICC of different methods

      Methodσ
      LBP0.51740.62480.49340.55880.57670.0719
      Landweber0.94380.96020.93290.88410.81810.0778
      U-Net0.90700.79480.64620.65930.87850.1209
      LBP-Pix2Pix0.99080.96980.91430.88340.91270.0445
    • Table 6. ERSME of different methods

      View table

      Table 6. ERSME of different methods

      Methodσ
      LBP0.05620.06160.05580.07170.07890.0091
      Landweber0.01450.02150.02670.04590.06120.0172
      U-Net0.02680.03490.04650.06830.04530.0140
      LBP-Pix2Pix0.01070.01360.02400.03780.03670.0113
    • Table 7. RPSNR of different methods

      View table

      Table 7. RPSNR of different methods

      Methodσ
      LBP25.004024.205925.062322.893622.05511.1886
      Landweber36.768633.362031.477126.762524.27054.4992
      U-Net31.428429.135326.656323.127926.87852.7678
      LBP-Pix2Pix39.386937.338532.410728.451728.70634.4441
    • Table 8. MSSIM of different methods

      View table

      Table 8. MSSIM of different methods

      Methodσ
      LBP0.51260.51760.53560.56160.55230.0190
      Landweber0.94810.86840.81690.64160.51460.1579
      U-Net0.97990.93750.90340.77230.87960.0698
      LBP-Pix2Pix0.99460.97810.94860.87970.89920.0443
    Tools

    Get Citation

    Copy Citation Text

    Yiting Xu, Huajun Li, Yingkuang Zhu, Lianjie Chen, Youhu Zhang. Reconstruction Method for Optical Tomography Based on Generative Adversarial Network[J]. Laser & Optoelectronics Progress, 2024, 61(12): 1211001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: May. 4, 2023

    Accepted: Aug. 10, 2023

    Published Online: Jun. 20, 2024

    The Author Email: Huajun Li (hjli@hdu.edu.cn)

    DOI:10.3788/LOP231214

    CSTR:32186.14.LOP231214

    Topics