Acta Optica Sinica, Volume. 44, Issue 2, 0212002(2024)
Photonic Radiative Cooling Power Measurement System Based on Fuzzy Control
[1] Zhao B, Hu M K, Ao X Z et al. Performance evaluation of daytime radiative cooling under different clear sky conditions[J]. Applied Thermal Engineering, 155, 660-666(2019).
[2] Du X R, Wang X Y, Zhu B. Personal radiative cooling textile generation[J]. Laser & Optoelectronics Progress, 60, 1316006(2023).
[3] Yu X X, Chan J Q, Chen C. Review of radiative cooling materials: performance evaluation and design approaches[J]. Nano Energy, 88, 106259(2021).
[4] Muntasir M H, Min G. Radiative cooling: principles, progress, and potentials.[J]. Advanced Science, 3, 1500360(2016).
[5] Raman A P, Anoma M A, Zhu L X et al. Passive radiative cooling below ambient air temperature under direct sunlight[J]. Nature, 515, 540-544(2014).
[6] Chen Z, Zhu L X, Raman A et al. Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle[J]. Nature Communications, 7, 13729(2016).
[7] Wang H D, Xue C H, Guo X J et al. Superhydrophobic porous film for daytime radiative cooling[J]. Applied Materials Today, 24, 101100(2021).
[8] Yang X B, Geng J L, Tan X Y et al. A flexible PDMS@ZrO2 film for highly efficient passive radiative cooling[J]. Inorganic Chemistry Communications, 151, 110586(2023).
[9] Ahmed S, Li Z P, Javed M S et al. A review on the integration of radiative cooling and solar energy harvesting[J]. Materials Today Energy, 21, 100776(2021).
[10] Pal S K, Choi D Y, Kim G. Radiative cooling face mask[J]. ACS Applied Polymer Materials, 5, 5888-5895(2023).
[11] Mandal J, Fu Y K, Overvig A C et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling[J]. Science, 362, 315-319(2018).
[12] Cheng Z M, Han H, Wang F Q et al. Efficient radiative cooling coating with biomimetic human skin wrinkle structure[J]. Nano Energy, 89, 106377(2021).
[13] Yoon S, Chae D, Seo J et al. Development of a device for characterizing radiative cooling performance[J]. Applied Thermal Engineering, 213, 118744(2022).
[14] Zhu Y N, Luo H, Yang C Y et al. Color-preserving passive radiative cooling for an actively temperature-regulated enclosure[J]. Light: Science & Applications, 11, 122(2022).
[15] Li X Q, Sun B W, Sui C X et al. Integration of daytime radiative cooling and solar heating for year-round energy saving in buildings[J]. Nature Communications, 11, 6101(2020).
[16] Zhu H Z, Li Q, Tao C N et al. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling[J]. Nature Communications, 12, 1805(2021).
[17] Li D, Liu X, Li W et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling[J]. Nature Nanotechnology, 16, 153-158(2021).
[18] Kou J L, Jurado Z, Chen Z et al. Daytime radiative cooling using near-black infrared emitters[J]. ACS Photonics, 4, 626-630(2017).
[19] Zhao H P, Zhang X Y, He Y B et al. Self-adaptive temperature modulation based on thermal induced phase changing of vanadium dioxide[J]. Acta Optica Sinica, 41, 1523001(2021).
[20] Ulpiani G, Ranzi G, Shah K W et al. On the energy modulation of daytime radiative coolers: a review on infrared emissivity dynamic switch against overcooling[J]. Solar Energy, 209, 278-301(2020).
[21] Wang C, Zhou Z Y, Zhang C Y. Design and application of electrolytic cell protective sleeve of sulfur and chlorine analyzer based on 3D printing TPU material[J]. Engineering Plastics Application, 51, 113-119(2023).
[22] Yu H B, Sun B Y, Yang W Y et al. Structural design and finite element analysis of car carrier based on solidworks[J]. Modern Information Technology, 7, 151-153(2023).
[23] Xu X Q, Li S Y, Liu C et al. Calibration method of on-chip thin film platinum resistance temperature sensor[J]. Acta Metrologica Sinica, 43, 1605-1609(2022).
[24] Zhou Z W, Deng T Y, Shi L et al. Temperature compensation and field calibration method of piezoresistive pressure sensor[J]. Transducer and Microsystem Technologies, 41, 145-148(2022).
[25] Chen Y Z. Study on heat conduction mechanism and thermal measurement of thin layer interface[D], 7-14(2020).
[26] Lu Y, Zhang Y R, Hu X L. Design of semiconductor laser temperature control system based on fuzzy PID[J]. Machinery & Electronics, 36, 50-53(2018).
[27] Gao J X, Song Y S, Liu Y. Application of nonlinear PID active disturbance rejection control in the temperature control system of fast steering mirror[J]. Laser & Optoelectronics Progress, 60, 0523001(2023).
[28] Ding F, Xu L, Liu X M. Transfer function Identification.Part A: two-point and three-point methods based on the step responses[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 39, 1-14(2018).
[29] Xu X Y, Zhou J C, Liu Z et al. Research on broadband cavity enhanced atmospheric nitrogen dioxide detection technology based on high precision PID temperature control[J]. Acta Optica Sinica, 43, 2430001(2023).
[30] Zhang A D, Zhang Y R, Li T. Application of variable domain fuzzy PID control in semiconductor laser temperature control system[J]. Acta Optica Sinica, 41, 1214003(2021).
[31] Jiao R L, Song H B, Ren Y N et al. Study on fuzzy adaptive PID control system and simulation based on MATLAB[J]. Equipment Manufacturing Technology, 87-89(2015).
[32] Qin J E, Zhang Z H, Li Y W et al. Design and manufacture of a radiative cooler to measure the subambient cooling effect and cooling power[J]. Review of Scientific Instruments, 93, 054901(2022).
Get Citation
Copy Citation Text
Yusheng Zhou, Hongyu Zhu, Ben Chen, Jiacheng Chen, Yaohui Zhan, Xiaofeng Li. Photonic Radiative Cooling Power Measurement System Based on Fuzzy Control[J]. Acta Optica Sinica, 2024, 44(2): 0212002
Category: Instrumentation, Measurement and Metrology
Received: Jun. 2, 2023
Accepted: Sep. 21, 2023
Published Online: Jan. 12, 2024
The Author Email: Zhan Yaohui (yhzhan@suda.edu.cn), Li Xiaofeng (xfli@suda.edu.cn)