Journal of Inorganic Materials, Volume. 37, Issue 5, 473(2022)
[1] COLOGNA M, RASHKOVA B, RAJ R. Flash sintering of nanograin zirconia in <5 s at 850 ℃[J]. J. Am. Ceram. Soc., 93, 3556-3559(2010).
[2] REN K, LIU J, WANG Y. Flash sintering of yttria-stabilized zirconia: Fundamental understanding and applications[J]. Scripta Mater., 187, 371-378(2020).
[6] YU M, GRASSO S, MCKINNON R. Review of flash sintering: materials, mechanisms and modelling[J]. Adv. Appl. Ceram., 116, 24-60(2017).
[7] BIESUZ M, SGLAVO V M. Flash sintering of ceramics[J]. J. Eur. Ceram. Soc., 39, 115-143(2019).
[8] LIU D, CAO Y, LIU J. Effect of oxygen partial pressure on temperature for onset of flash sintering 3YSZ[J]. J. Eur. Ceram. Soc., 38, 817-820(2018).
[9] ZAPATA-SOLVAS E, BONILLA S, WILSHAW P R. Preliminary investigation of flash sintering of SiC[J]. J. Eur. Ceram. Soc., 33, 2811-2816(2013).
[10] ZHANG Y, NIE J, CHAN J M. Probing the densification mechanisms during flash sintering of ZnO[J]. Acta Mater., 125, 465-475(2017).
[11] COLOGNA M, FRANCIS J S C, RAJ R. Field assisted and flash sintering of alumina and its relationship to conductivity and MgO- doping[J]. J. Eur. Ceram. Soc., 31, 2827-2837(2011).
[12] LEBRUN J M, RAJ R. A first report of photoemission in experiments related to flash sintering[J]. J. Am. Ceram. Soc., 97, 2427-2430(2014).
[13] GAO Y, LIU F, LIU D. Electrical-field induced nonlinear conductive behavior in dense zirconia ceramic[J]. J. Mater. Sci. Technol., 33, 897-900(2017).
[14] XIA J, REN K, WANG Y. Reversible flash-bonding of zirconia and nickel alloys[J]. Scripta Mater., 153, 31-34(2018).
[15] LIU G. LIU D, LIU J. Asymmetric temperature distribution during steady stage of flash sintering dense zirconia[J]. J. Eur. Ceram. Soc., 38, 2893-2896(2018).
[16] LIU J, LIU D, WANG Y. The Onset of Flash Sintering 8YSZ. ECI Conference on Electric Field Enhanced Processing of Advanced Materials II: Complexities and Opportunities[J]. Tomar, Portugal, March, 10-15(2019).
[17] YADAV D, RAJ R. The onset of the flash transition in single crystals of cubic zirconia as a function of electric field and temperature[J]. Scripta Mater., 134, 123-127(2017).
[18] JO S, RAJ R. Transition to electronic conduction at the onset of flash in cubic zirconia[J]. Scripta Mater., 174, 29-32(2020).
[19] COLOGNA M, PRETTE A L G, RAJ R. Flash-sintering of cubic yttria-stabilized zirconia at 750 ℃ for possible use in SOFC manufacturing[J]. J. Am. Ceram. Soc., 94, 316-319(2011).
[20] DONG Y, CHEN I W. Predicting the onset of flash sintering[J]. J. Am. Ceram. Soc., 98, 2333-2335(2015).
[21] ZHANG Y, JUNG J, LUO J. Thermal runaway, flash sintering and asymmetrical microstructural development of ZnO and ZnO-Bi2O3 under direct currents[J]. Acta Mater., 94, 87-100(2015).
[22] TODD R I, ZAPATA-SOLVAS E, BONILLA R S. Electrical characteristics of flash sintering: thermal runaway of Joule heating[J]. J. Eur. Ceram. Soc., 35, 1865-1877(2015).
[23] FRANCIS J S C, RAJ R. Flash-sinterforging of nanograin zirconia: field assisted sintering and superplasticity[J]. J. Am. Ceram. Soc., 95, 138-146(2012).
[24] REN K, WANG Q, LIAN Y. Densification kinetics of flash sintered 3mol% Y2O3 stabilized zirconia[J]. J. Alloys Compd., 747, 1073-1077(2018).
[25] REN K, HUANG S, CAO Y. The densification behavior of flash sintered BaTiO3[J]. Scripta Mater., 186, 362-365(2020).
[26] LIU D, LI X, LIU F. Effect of the current density on the densification of 3mol% yttria-stabilized zirconia in flash sintering[J]. J. Alloys Compd., 825, 154061(2020).
[27] LIU J, LIU D, WANG Y. Flash sintering yttria-stablized zirconia (3Y-TZP) and zirconia-3mol%yttria nanocomposites[J]. 39th international conference and exposition on advanced ceramics and composites, Daytona Beach, USA, January, 25-30, 2015.
[28] LIU D, GAO Y, LIU J. Effect of holding time on the microstructure and properties of flash sintered Y2O3-doped ZrO2[J]. Ceram. Int., 42, 17442-17446(2016).
[29] JI W, PARKER B, FALCO S. Ultra-fast firing: Effect of heating rate on sintering of 3YSZ, with and without an electric field[J]. J. Eur. Ceram. Soc., 37, 2547-2551(2017).
[30] NARAYAN J. A new mechanism for field-assisted processing and flash sintering of materials[J]. Scripta Mater., 69, 107-111(2013).
[31] ZHU F, PENG X, LIU J. Surface temperature distribution on dense 8YSZ ceramics during the steady stage in AC flash sintering[J]. Ceram. Int., 47, 2884-2887(2021).
[32] REN K, XIA J, WANG Y. Grain growth kinetics of 3mol% yttria-stabilized zirconia during flash sintering[J]. J. Eur. Ceram. Soc., 39, 1366-1373(2019).
[33] LIU D, LIU J, GAO Y. Effect of the applied electric field on the microstructure and electrical properties of flash-sintered 3YSZ ceramics[J]. Ceram. Int., 42, 19075-19079(2016).
[34] XIA J, REN K, WANG Y. Reversible joining of zirconia to titanium alloy[J]. Ceram. Int., 45, 2509-2515(2019).
[35] XIA J, REN K, WANG Y. One-second flash joining of zirconia ceramic by an electric field at low temperatures[J]. Scripta Mater., 165, 34-38(2019).
[36] XIA J, REN K, LIU W. Ultrafast joining of zirconia ceramics using electric field at low temperatures[J]. J. Eur. Ceram. Soc., 39, 3173-3179(2019).
[37] XIA J, REN K, WANG Y. Flash joining of alumina ceramics under a small current density[J]. J. Eur. Ceram. Soc., 41, 2782-2789(2021).
[38] XIA J, REN K, WANG Y. Rapid joining of heterogeneous ceramics with a composite interlayer under the action of an electric field[J]. J. Eur. Ceram. Soc., 41, 7164-7169(2021).
[39] XIAO W, NI N, FAN X. Ambient flash sintering of reduced graphene oxide/zirconia composites: Role of reduced graphene oxide[J]. J. Mater. Sci. Technol., 60, 70-76(2021).
[40] JIA Y, SU X, WU Y. Flash sintering of 3YSZ/Al2O3-platelet composites[J]. J. Am. Ceram. Soc., 103, 2351-2361(2020).
[41] XU C, WANG L, BAI B. Rapid synthesis of Gd2Zr2O7 ceramics by flash sintering and its aqueous durability[J]. J. Eur. Ceram. Soc., 40, 1620-1625(2020).
[42] ZHANG H, WANG Y, LIU J. Reaction assisted flash sintering of Al2O3-YAG ceramic composites with eutectic composition[J]. Ceram. Int., 45, 13551-13555(2019).
[43] LIAN Y, REN K, WANG Q. Rapid immobilization of simulated radionuclide Nd at low temperatures by flash reaction[J]. Ceram. Int., 45, 22388-22393(2019).
[44] ZHU Y, MA B, WANG K. Electric field-assisted solid-state reaction of BaCO3-TiO2 system[J]. J. Am. Ceram. Soc., 104, 6572-6578(2021).
[45] REN K, CAO Y, CHEN Y. Flash sintering of Na3Zr2(SiO4)2 (PO4) solid-state electrolyte at furnace temperature of 700 ℃[J]. Scripta Mater., 187, 384-389(2020).
[46] LIU D, PENG X, LIU J. Ultrafast synthesis of entropy- stabilized oxide at room temperature[J]. J. Eur. Ceram. Soc., 40, 2504-2508(2020).
[47] LI W, CHEN L, LIU D. Ultra-low temperature reactive flash sintering synthesis of high-enthalpy and high-entropy Ca0.2Co0.2 Ni0.2Cu0.2Zn0.2O oxide ceramics[J]. Mater. Lett., 304, 130679(2021).
[48] WANG K, MA B, LI T. Fabrication of high-entropy perovskite oxide by reactive flash sintering[J]. Ceram. Int., 46, 18358-18361(2020).
[49] LIU J, REN K, MA C. Dielectric and energy storage properties of flash-sintered high-entropy (Bi0.2Na0.2K0.2Ba0.2Ca0.2)TiO3 ceramic[J]. Ceram. Int., 46, 20576-20581(2020).
[50] LIU J, XU X, LIU D. Ultrafast formation of Al2O3-Y3Al5O12 eutectic ceramic by flash sintering[J]. J. Am. Ceram. Soc., 103, 4051-4056(2020).
[51] XU X, FAN J, LIU J. Formation of eutectic structure in dense Al2O3-YAG composite by electric field treatment[J]. Ceram. Int., 47, 23647-23652(2021).
[52] YAO S, LIU D, LIU J. Ultrafast preparation of Al2O3-ZrO2 multiphase ceramics with eutectic morphology
[53] LU S, LIU J, SHAO G. On the electric conduction of ZrO2 in the steady stage of flash sintering[J]. Ceram. Int., 46, 5715-5718(2020).
[54] LIU D, LIU J, WANG Y. DC Electric Field Assisted 3YSZ Ceramic Superplastic Deformation. ECI Conference on Electric Field Enhanced Processing of Advanced Materials II: Complexities and Opportunities[J]. Tomar, Portugal, March, 10-15(2019).
[55] WANG C, PING W, BAI Q. A general method to synthesize and sinter bulk ceramics in seconds[J]. Science, 368, 521-526(2020).
[56] JONGMANNS M, RAJ R, WOLF D E. Generation of Frenkel defects above the Debye temperature by proliferation of phonons near the Brillouin zone edge[J]. New J. Phys., 20, 093013(2018).
[57] JONES G M, BIESUZ M, JI W. Promoting microstructural homogeneity during flash sintering of ceramics through thermal management[J]. MRS Bull., 46, 59-66(2021).
[58] GUILLON O, DE SOUZA R A, MISHRA T P, RHEINHEIMER W. Electric-field-assisted processing of ceramics: nonthermal effects and related mechanisms[J]. MRS Bull., 46, 52-58(2021).
[59] RAJ R. KULKARNI A, LEBRUN J M. Flash sintering: A new frontier in defect physics and materials science[J]. MRS Bull., 46, 36-43(2021).
[60] MA B, ZHU Y, WANG K. Microstructure and dielectric property of flash sintered SiO2-coated BaTiO3 ceramics[J]. Scripta Mater., 170, 1-5(2019).
Get Citation
Copy Citation Text
Jinling LIU, Dianguang LIU, Ke REN, Yiguang WANG.
Category: REVIEW
Received: Aug. 19, 2021
Accepted: --
Published Online: Jan. 10, 2023
The Author Email: Yiguang WANG (wangyiguang@bit.edu.cn)