Optics and Precision Engineering, Volume. 31, Issue 22, 3371(2023)

Lightweight multi-scale difference network for remote sensing building extraction

Guoyan LI1, Haimiao WU1, Chunhua DONG2、*, and Yi LIU1
Author Affiliations
  • 1School of Computer and Information Engineering, Tianjin Chengjian University, Tianjin300384, China
  • 2School of Geology and Mapping, Tianjin Chengjian University, Tianjin300384, China
  • show less
    Figures & Tables(16)
    General framework diagram of LMD-Net
    Deeply separable convolution process
    Four types of feature processing units
    MSDP module structure diagram
    Inflated convolution visualization effect
    Dual integration mechanism
    Model training and validation phase metrics change trend graph
    Segmentation efficiency and performance of six feature processing units on the WHU dataset
    Visual segmentation results of MSDP module
    Contribution of SPFR mechanism on the WHU dataset
    Forecast map on small buildings
    Prediction map on large buildings
    • Table 1. LMD-Net Network Components

      View table
      View in Article

      Table 1. LMD-Net Network Components

      StageLevelModule typeFilterOutput size
      EncodeInput3×224×224
      Level 1BlockA3×3/6464×224×224
      Level 2Downsampling3×3/128128×112×112
      BlockA3×3/128128×112×112
      Level 3Downsampling3×3/256256×56×56
      MSDP3×3/256256×56×56
      Level 4Downsampling3×3/512512×28×28
      BlockA3×3/512512×28×28
      DecodeLevel 5Upsampling3×3/256256×56×56
      DIM3×3/256256×56×56
      Level 6Upsampling3×3/128128×112×112
      MSDP3×3/128128×112×112
      Level 7Upsampling3×3/6464×224×224
      BlockD3×3/6464×224×224
      Output1×11×224×224
    • Table 2. Segmentation accuracy of MSDP on WHU dataset

      View table
      View in Article

      Table 2. Segmentation accuracy of MSDP on WHU dataset

      GroupModelPositionIoUPreRDice
      MSDP
      1BlockA+BlockD86.8491.3490.3190.80
      2Group1+MSDP087.0391.3590.6690.98
      3Group1+MSDP187.0791.4390.7191.05
      4Group1+MSDP0、187.2691.1391.0891.10
      5Group1+MSDP0、286.8991.2090.3290.84
    • Table 3. Experiments comparing complexity of each model

      View table
      View in Article

      Table 3. Experiments comparing complexity of each model

      GroupModelParams/MMADDs/GFlops
      1SegNet29.4461.3630.7 G
      2U-Net32.0877.5338.81 G
      3ENet0.361.05434.83 M
      4ESFNet0.681.69850.33 M
      5ResUNet13.04109.0752.12 G
      6LMD-Net10.4281.6839.23 G
    • Table 4. Comparison experiments of segmentation accuracy of different networks

      View table
      View in Article

      Table 4. Comparison experiments of segmentation accuracy of different networks

      ModelIouPreRDice
      U-Net83.6190.0987.5788.78
      SegNet79.4586.7685.2485.96
      ENet81.3487.9186.9287.37
      ESFnet76.4583.9583.5483.72
      ResUNet84.4989.1989.4889.31
      LMD-Net87.7291.7691.0491.38
    Tools

    Get Citation

    Copy Citation Text

    Guoyan LI, Haimiao WU, Chunhua DONG, Yi LIU. Lightweight multi-scale difference network for remote sensing building extraction[J]. Optics and Precision Engineering, 2023, 31(22): 3371

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 4, 2023

    Accepted: --

    Published Online: Dec. 29, 2023

    The Author Email: Chunhua DONG (dch@tcu.edu.cn)

    DOI:10.37188/OPE.20233122.3371

    Topics