Acta Optica Sinica, Volume. 33, Issue 8, 822002(2013)
Restraint of Mid-Spatial-Frequency Error Aspheric Surface by Small-Tool Adaptive Polishing
[1] [1] J Wang, L L Wang. Carbon dioxide gas sensor derived from a 547-hole microstructured polymer optical fiber preform [J]. Opt Lett, 2011, 35(19): 3270-3272.
[2] [2] Y Ohmura, M Nakagawa, T Matsuyama, et al.. Catadioptric lens development for DUV and VUV projection optics [C]. SPIE, 2003, 5040: 781-788.
[3] [3] Nikon Corp. Projection optical system, exposure device provided with it and manufacture for semiconductor device Japan Patent 2000, 56218 [P]. 2000.
[4] [4] Burn J Lin. Marching of the microlithography horses: electron, ion, andphoton: past, present, and future [C]. SPIE, 2007, 6520: 652002.
[5] [5] D M Williamson. Remaining challenges in microlithographic optical design [C]. SPIE, 2005, 5874: 58740N.
[6] [6] Y Ohmura. The optical design for microlithographic lenses [C]. SPIE, 2006, 6342: 63421T.
[7] [7] R A Jones. Computer-controlled polishing of telescope mirror segments [J]. Opt Engng, 1983, 22(2): 222236.
[8] [8] R A Jones. Computer-controlled optical surfacing with orbital tool motion [J]. Opt Engng, 1986, 25(6): 256785.
[9] [9] D D Walker, D Brooks, A King, et al.. The ‘Precessions’tooling for polishing and figuring flat, spherical and aspheric surfaces [J]. Opt Express, 2003, 11(8): 958-964.
[10] [10] H M Pollicove, E M Fess, J M Schoen. Deterministic manufacturing processes for precision opticalsurfaces [C]. SPIE, 2003, 238-239: 53-58.
[11] [11] D W Kim, H Martin, J H Burge. Control of mid-spatial-frequency errors for large steep aspheric surfaces [C]. The Optical Society, Optical Fabrication and TestingConference, June 25, 2012.
[12] [12] J E Harvey, A Kotha. Scattering effects from residual optical fabrication errors [C]. SPIE, 1995, 2576: 155-174.
[13] [13] D M Aikens. The origin and evolution of the optics for the National Ignition Facility [C]. SPIE, 1995, 2536: 2-12.
[14] [14] S C West, H M Martin, R H Nagel, et al.. Practical design and performance of the stressed lap polishing tool [J]. Appl Opt, 1994, 33(34): 8094-8100.
[15] [15] Shi Chunyan, Yuan Jiahu, Wu Fan, et al.. Analysis of polishing errors by tool paths and optimization of tool paths [J]. Acta Optica sinica, 2011, 31(8): 0822003.
[16] [16] H M Martin, B Cuerden, L R Dettmann, et al.. Active optics and force optimization for the first 8.4 m LBT mirror [C]. SPIE, 2004, 5489: 550464.
[17] [17] P Kurz, M Antoni, U Dinger. Optics for EUV Lithography [R]. 2010.
[19] [19] Zhong Xianyun, Fan Bin, Zeng Zhige, et al.. Design simulation and optimization for the flexible displacement support structure based or Φ1.8 m lightwave reflector [J]. Acta Optica Sinica, 2013, 32(3): 0322002.
[20] [20] H Hu, Y F Dai, X Q Peng. Restraint of tool path ripple based on surface error distribution and process parameters in deterministic finishing [J]. Opt Express, 2010, 18(22):22973-22981.
[21] [21] Y F Dai, F Shi, X Q Peng, et al.. Restraint of mid-spatial frequency error in magneto-rheological finishing (MRF) process by maximum entropy method [J]. Science in China Series E: Technological Sciences, 2009, 52(10): 3092-3097.
[22] [22] P K Mehta, R E Hufnagel. Pressure distribution under flexible polishing tools 21 conventional aspheric optics [C]. SPIE, 1990, 1303. 178-188.
Get Citation
Copy Citation Text
Zhang Jian, Dai Lei, Wang Fei, Wang Lipeng. Restraint of Mid-Spatial-Frequency Error Aspheric Surface by Small-Tool Adaptive Polishing[J]. Acta Optica Sinica, 2013, 33(8): 822002
Category: Optical Design and Fabrication
Received: Jan. 14, 2013
Accepted: --
Published Online: Jul. 26, 2013
The Author Email: Jian Zhang (jzhang@sklao.ac.cn)