Chinese Optics, Volume. 15, Issue 4, 731(2022)

Enhancement of terahertz absorption spectrum based on the angle multiplexing of the dielectric metasurface

Xiang-jun LI1,2,3、*, Chan MA1, De-xian YAN1,2,3、*, Guo-hua QIU1,2, Yang ZHAO1, Ji YANG1, and Shi-hui GUO3
Author Affiliations
  • 1Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, China Jiliang University, Hangzhou 310018, China
  • 2Centre for THz Research, China Jiliang University, Hangzhou 310018, China
  • 3Zhejiang Zhong Huan Detection CO., LTD, Wenzhou 325000, China
  • show less
    References(25)

    [1] [1] ZHANG X CH, XU J ZH. Introduction to THz Wave Photonics[M]. Boston: Springer, 2010.

    [2] TONOUCHI M. Cutting-edge terahertz technology[J]. Nature Photonics, 1, 97-105(2007).

    [3] SHEN J X, ZHU ZH J, ZHANG Z CH, et al. Ultra-broadband terahertz fingerprint spectrum of melatonin with vibrational mode analysis[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 247, 119141(2021).

    [4] XU W D, XIE L J, ZHU J F, et al. Terahertz biosensing with a graphene-metamaterial heterostructure platform[J]. Carbon, 141, 247-252(2019).

    [5] FEDERICI J F, SCHULKIN B, HUANG F, et al. THz imaging and sensing for security applications—explosives, weapons and drugs[J]. Semiconductor Science and Technology, 20, S266-S280(2005).

    [6] ZHAN H L, ZHAO K, BAO R M, et al. Monitoring PM2.5 in the atmosphere by using terahertz time-domain spectroscopy[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 37, 929-938(2016).

    [7] SULTANA J, ISLAM M S, AHMED K, et al. Terahertz detection of alcohol using a photonic crystal fiber sensor[J]. Applied Optics, 57, 2426-2433(2018).

    [8] YEE C M, SHERWIN M S. High-Q terahertz microcavities in silicon photonic crystal slabs[J]. Applied Physics Letters, 94, 154104(2009).

    [9] WANG Y H, LI X J, LANG T T, et al. Multiband guided-mode resonance filter in bilayer asymmetric metallic gratings[J]. Optics & Laser Technology, 103, 135-141(2018).

    [10] GUPTA M, SRIVASTAVA Y K, MANJAPPA M, et al. Sensing with toroidal metamaterial[J]. Applied Physics Letters, 110, 121108(2017).

    [11] GOMON D, SEDYKH E, RODRÍGUEZ S, et al. Influence of the geometric parameters of the electrical ring resonator metasurface on the performance of metamaterial absorbers for terahertz applications[J]. Chinese Optics, 11, 47-59(2018).

    [12] HAN S, CONG L Q, SRIVASTAVA Y K, et al. All-dielectric active terahertz photonics driven by bound states in the continuum[J]. Advanced Materials, 31, 1901921(2019).

    [13] ZHOU J Y, YAN SH, LI CH W, et al. Perfect ultraviolet absorption in graphene using the magnetic resonance of an all-dielectric nanostructure[J]. Optics Express, 26, 18155-18163(2018).

    [14] LONG ZH W, LIANG Y ZH, FENG L, et al. Low-cost and high sensitivity glucose sandwich detection using a plasmonic nanodisk metasurface[J]. Nanoscale, 12, 10809-10815(2020).

    [15] YESILKOY F, ARVELO E R, JAHANI Y, et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces[J]. Nature Photonics, 13, 390-396(2019).

    [16] LIANG Y ZH, CUI W L, LI L X, et al. Large-scale plasmonic nanodisk structures for a high sensitivity biosensing platform fabricated by transfer nanoprinting[J]. Advanced Optical Materials, 7, 1801269(2019).

    [17] LI X J, HOU X M, CHENG G, . Simulation on tunable graphene metasurface focusing mirror based on flexible substrate[J]. Chinese Optics, 14, 1019-1028(2021).

    [18] LIN J, LI Q, QIU M, . Coupling between Meta-atoms: a new degree of freedom in metasurfaces manipulating electromagnetic waves[J]. Chinese Optics, 14, 717-735(2021).

    [19] LEITIS A, TITTL A, LIU M K, et al. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval[J]. Science Advances, 5, eaaw2871(2019).

    [20] TITTL A, LEITIS A, LIU M K, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 360, 1105-1109(2018).

    [21] ZHONG Y J, DU L H, LIU Q, et al. Ultrasensitive specific sensor based on all-dielectric metasurfaces in the terahertz range[J]. RSC Advances, 10, 33018-33025(2020).

    [22] XIE Y N, LIU X Y, LI F J, et al. Ultra-wideband enhancement on mid-infrared fingerprint sensing for 2D materials and analytes of monolayers by a metagrating[J]. Nanophotonics, 9, 2927-2935(2020).

    [23] ZHU J F, JIANG SH, XIE Y N, et al. Enhancing terahertz molecular fingerprint detection by a dielectric metagrating[J]. Optics Letters, 45, 2335-2338(2020).

    [24] RYBIN M V, KOSHELEV K L, SADRIEVA Z F, et al. High-Q supercavity modes in subwavelength dielectric resonators[J]. Physical Review Letters, 119, 243901(2017).

    [25] SHI X M, HAN ZH H. Enhanced terahertz fingerprint detection with ultrahigh sensitivity using the cavity defect modes[J]. Scientific Reports, 7, 13147(2017).

    CLP Journals

    [1] Xiao-bin ZHANG, Wei-na HAN. Angle-multiplexed optically encrypted metasurfaces fabricated by ultrafast laser induced spatially selective-modified nanograting structures[J]. Chinese Optics, 2023, 16(4): 889

    [2] Zi-jing WANG, Xiang-jun LI, De-xian YAN. Terahertz broadband absorption spectrum enhancement based on asymmetric dielectric meta-grating on a metal substrate[J]. Chinese Optics, 2025, 18(4): 738

    Tools

    Get Citation

    Copy Citation Text

    Xiang-jun LI, Chan MA, De-xian YAN, Guo-hua QIU, Yang ZHAO, Ji YANG, Shi-hui GUO. Enhancement of terahertz absorption spectrum based on the angle multiplexing of the dielectric metasurface[J]. Chinese Optics, 2022, 15(4): 731

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Original Article

    Received: Nov. 12, 2021

    Accepted: --

    Published Online: Sep. 6, 2022

    The Author Email:

    DOI:10.37188/CO.2021-0197

    Topics