Chinese Journal of Lasers, Volume. 48, Issue 4, 0401004(2021)

High-Power Ytterbium-Doped Fiber Laser Oscillator: Current Situation and Future Developments

Xiaolin Wang1,2,3、*, Hanwei Zhang1,2,3, Baolai Yang1,2,3, Xiaoming Xi1,2,3, Peng Wang1,2,3, Chen Shi1,2,3, Zefeng Wang1,2,3, Pu Zhou1,2,3、*, Xiaojun Xu1,2,3、**, and Jinbao Chen1,2,3
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, Hunan 410073, China
  • 2State Key Laboratory of Pulsed Power Laser Technology, Changsha, Hunan 410073, China
  • 3Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha, Hunan 410073, China
  • show less
    Figures & Tables(21)
    Experimental setup of the 17.5 kW laser oscillator with spatial configuration[6]
    Output power and beam quality of 17.5 kW laser oscillator with spatial configuration[6]. (a) Pump power versus output power; (b) beam quality measurement results
    Experiment setup of the spatial configured laser oscillator based on gain fiber with fiber grating[25]
    Experimental results of the spatial configured laser oscillator based on gain fiber with fiber grating[25]. (a) Spectra in different power; (b) center wavelength in different power
    Experimental setup of 6 kW all-fiber laser oscillator[24]
    Experimental results of 6 kW all-fiber laser oscillator[24]. (a) Power and efficiency curve; (b) output spectrum; (c) output beam profile
    5 kW all-fiber laser oscillator based on fs laser written fiber grating[26]. (a) Experimental setup; (b) spectrum of the fiber gratings
    Experimental results of 5 kW all-fiber laser oscillator based on fs laser written fiber grating[26]. (a) Power and beam profile; (b) output spectrum
    Experimental setup of the 8 kW all-fiber laser oscillator[7]
    Experimental results of the 8 kW all-fiber laser oscillator[7]. (a) Spectrum in different power; (b) beam quality in 8 kW
    Relationship between output power and time domain normalized STD in fiber amplifier and fiber oscillator[9]
    Beam profile of ring laser employing fiber laser oscillator. (a) Beam profile of 3 kW ring laser from Shanghai FeiBo laser Technologies Co. Led.[61]; (b) beam profile of 5 kW ring laser from NUDT
    Experiment results of fiber laser in short wavelength. (a) Output power of different wavelengths; (b) spectrum of 1018 nm laser
    Experiment results of fiber laser before and after optimizing of pump wavelength. (a) Output power and efficiency at 976 nm wavelength; (b) output power and efficiency at optimized pump wavelength
    Spindly gain fiber. (a) With variable core-to-cladding diameter ratio; (b) with invariable core-to-cladding diameter ratio
    Experimental results of laser oscillator employing spindly gain fiber laser with constant core-to-cladding diameter ratio. (a) Output power and efficiency; (b) beam quality in different power
    Output laser beam patterns of laser oscillator based on high-order mode reflected fiber grating. (a) LP11o mode;(b) LP21e mode
    Technical proposal of 10 kW level high power fiber laser oscillator
    • Table 1. Typical research results of high power all-fiber laser oscillators

      View table

      Table 1. Typical research results of high power all-fiber laser oscillators

      YearInstitutionTypeφ or AeffNAPower/kWBeam qualityReference
      2012Alfalight, USAAll fiberφ=20 μm0.0651.0M2≈1.2Ref. [10]
      2014Coherent, USASpatialAeff=800 μm20.0483.0M2<1.15Ref. [11]
      2014NUDT, ChinaAll fiberφ=20 μm0.0651.5M2<1.2Ref. [12]
      2015TJU, ChinaAll fiberφ=20 μm0.0651.6M2<1.1Ref. [13]
      2015Fujikura, JapanAll fiberAeff=400 μm20.072.0M2=1.2Ref. [14]
      2016NUDT, ChinaAll fiberφ=20 μm0.0652.5M2≈1.2Ref. [15]
      2018TJU, ChinaAll fiberφ=20 μm0.0652.0M2≈1.5Ref. [16]
      2017NUDT, ChinaAll fiberφ=20 μm0.0653M2≈1.3Ref. [17-18]
      2017SUS Tech, ChinaAll fiberφ=20 μm0.0652M2<1.2Ref. [19]
      2017Fujikura, JapanAll fiberAeff=400 μm20.073M2≈1.3Ref. [20]
      2017NUDT, ChinaAll fiberφ=25 μm4M2≈2.2Ref. [21]
      2018NUDT, ChinaAll fiberφ=25 μm(GT Wave)3.96M2≈2.0Ref. [22]
      2018Fujikura, JapanAll fiberAeff=600 μm25M2≈1.3Ref. [4]
      2018NUDT, ChinaAll fiberφ=25 μm0.0655.2M2≈1.7Ref. [3,23]
      2019Universität Jena, GermanyAll fiberφ=20 μm0.064.8M2≈1.3Ref. [8]
      2019NUDT, ChinaAll fiberAeff=600 μm26.06M2≈2.6Ref. [24]
      2019Laserline GmbH, GermanySpatialφ=50--90 μm0.1117.5BPP: 8 mm·mradRef. [6]
      2020Fraunhofer Institute for LT,GermanySpatialφ<100 μm8.113Ref. [25]
      2020Universität Jena, GermanyAll fiberφ=20 μm0.075M2≈1.3Ref. [26]
      2020Fujikura, JapanAll fiberAeff=600 μm28BPP: 0.5 mm·mradRef. [7]
    • Table 2. Typical products of high power all-fiber laser oscillator in some company

      View table

      Table 2. Typical products of high power all-fiber laser oscillator in some company

      YearCompanyPump schemeφ /μmPower /kWBeam qualityReference
      2010CoreLase, Finland976 nm LD pump201M2<1.6Ref. [29]
      2015Maxphotonics, China1.5M2<1.3Ref. [28]
      2015CoreLase, Finland976 nm LD pump202M2<1.6Ref. [29]
      2018GW laser, China976 nm LD pump203M2<1.3Ref. [36-37]
      2018DK laser, China3M2<1.3Ref. [33]
      2018FeiBo laser, ChinaLD pump3Ring laserRef. [32]
      2019Lumentum, USA915 nm LD pump4.2BPP: 1.5 mm·mradRef. [30]
      2019GW laserLD pump4Single modeRef. [36]
      2019Reci laser, ChinaLD pump4Single modeRef. [35]
      2019FeiBo laser, ChinaLD pump4Ring laserRef. [31]
    • Table 3. Research and industry status of high power all-fiber laser amplifiers

      View table

      Table 3. Research and industry status of high power all-fiber laser amplifiers

      YearInstitutionPump schemeFiber typePowerBeam qualityReference
      2009IPG photonics, USATandem pumpDCF10M2≈1.3Ref. [28]
      2015NUDT, ChinaLD pump30/400 μm DCF4.1M2≈2.1Ref. [41]
      2016Universität Jena, GermanyLD pump23/460 μm DCF4.3M2≈1.27Ref. [42]
      2016Xi'an IOPM, ChinaLD pump30/600 μm DCF4.62M2≈1.67Ref. [43]
      2016Huazhong UST, ChinaLD pump25/400 μm DCF3.5M2≈1.28Ref. [44]
      2016NUDT, ChinaTandem pumpDCF10β≈1.886Ref. [45]
      2016Tsinghua Unv., ChinaLD pumpDCF10Ref. [46]
      2016CEAP, ChinaLD pumpGT Wave5M2≈2.2Ref. [47]
      2017TJU, ChinaLD pump30/600 μm DCF5.01M2<1.8Ref. [48]
      2017CEAP, ChinaLD pump30 μm DCF6.03M2<2.38Ref. [49]
      2018CEAP, ChinaLD pump30/520 μm PIFL10.45Ref. [38]
      2018CEAP, ChinaLD pump30/900 μm DCF10.6β<2Ref. [39]
      2019SIOM, ChinaLD pump30/600 μm DCF10Ref. [40]
      2019Raycuslaser, ChinaLD pump3Ref. [34,50]
      2019Scyglight, ChinaLD pump3Single modeRef. [51]
      2019JPT laser, ChinaLD pump4Single modeRef. [34]
      2019Maxphotonics, ChinaLD pump5BPP: 1.8~3.0 mm·mardRef. [52]
      2019Raypower Laser, China5Single modeRef. [53]
      2019DK laser, China5M2≈1.8Ref. [33,54]
      2020DK laser, China6M2<2Ref. [55]
    Tools

    Get Citation

    Copy Citation Text

    Xiaolin Wang, Hanwei Zhang, Baolai Yang, Xiaoming Xi, Peng Wang, Chen Shi, Zefeng Wang, Pu Zhou, Xiaojun Xu, Jinbao Chen. High-Power Ytterbium-Doped Fiber Laser Oscillator: Current Situation and Future Developments[J]. Chinese Journal of Lasers, 2021, 48(4): 0401004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue: SPECIAL ISSUE FOR "NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY"

    Received: Jun. 28, 2020

    Accepted: Jul. 20, 2020

    Published Online: Feb. 3, 2021

    The Author Email: Wang Xiaolin (zhoupu203@163.com), Zhou Pu (zhoupu203@163.com), Xu Xiaojun (xuxj@163.com)

    DOI:10.3788/CJL202148.0401004

    Topics