Laser & Optoelectronics Progress, Volume. 60, Issue 10, 1028007(2023)

Shallow Water Depth Inversed Using Multispectral Satellite Based on Machine Learning

Jinlu Liu1, Deyong Sun1,2、*, Deyu Kong3, Xishan Pan3, Hongbo Jiao4, Zhenghao Li1, Shengqiang Wang1,2, and Yijun He1,2
Author Affiliations
  • 1School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu , China
  • 2Key Laboratory of Space Ocean Remote Sensing and Application, Ministry of Natural Resources, Nanjing 210044, Jiangsu , China
  • 3Jiangsu Provincial Marine Environment Monitoring Engineering Technology Research Center, Nanjing 210044, Jiangsu , China
  • 4National Marine Data and Information Service, Tianjin 300171, China
  • show less
    Figures & Tables(13)
    Study area. (a) South Andaman islands; (b) Kume-jima; (c) Mentawai islands; (d) Hateruma-jima
    Technology roadmap
    Schematic of BP neural network
    Schematic of random forest
    Comparison of modeling accuracy. (a) MLR; (b) BP neural network; (c) RF
    Comparison of validation accuracy. (a) MLR; (b) BP neural network; (c) RF
    Residual distribution. (a) MLR; (b) BP neural network; (c) RF
    Precision comparison between sub-region model and whole-region model
    Inversion result. (a) Hateruma-jima; (b) Kume-jima; (c) South Andaman islands; (d) Mentawai islands
    • Table 1. Data source introduction

      View table

      Table 1. Data source introduction

      SensorWavelength /μmCentral wavelength /μmResolution /mImaging time
      Landsat-8 OLICoastal:0.430-0.450(B1Coastal:0.44030

      Hateruma-jima

      2013-06-05

      Kume-jima

      2015-12-13

      South Andaman

      2021-03-10

      Mentawai

      2019-05-02,

      2019-05-27,2019-01-26

      B:0.450-0.510(B2B:0.480
      G:0.550-0.590(B3G:0.570
      R:0.640-0.670(B4R:0.655
      NIR:0.850-0.880(B5NIR:0.865
      SWIR1:1.570-1.650(B6SWIR1:1.610
      SWIR2:2.110-2.290(B7SWIR2:2.200
    • Table 2. Comparison of modeling accuracy of all models

      View table

      Table 2. Comparison of modeling accuracy of all models

      ModelMAE /mMAPE /%R2
      MLR2.3735.480.68
      BP1.9317.120.76
      RF1.019.020.93
    • Table 3. Comparison of validation accuracy of all models

      View table

      Table 3. Comparison of validation accuracy of all models

      ModelMAE /mMAPE /%R2
      MLR2.4525.380.66
      BP2.0519.430.74
      RF1.9418.290.75
    • Table 4. Precision comparison of sub-region model and whole-region model

      View table

      Table 4. Precision comparison of sub-region model and whole-region model

      IndexRegionSouth AndamanHateruma-jimaKume-jimaMentawai
      R2Sub-region0.740.870.710.64
      Whole-region0.740.870.720.66
      MAE /mSub-region1.951.342.301.78
      Whole-region1.951.362.111.80
      MAPE /%Sub-region18.3211.6023.0318.12
      Whole-region18.3711.4021.1916.79
    Tools

    Get Citation

    Copy Citation Text

    Jinlu Liu, Deyong Sun, Deyu Kong, Xishan Pan, Hongbo Jiao, Zhenghao Li, Shengqiang Wang, Yijun He. Shallow Water Depth Inversed Using Multispectral Satellite Based on Machine Learning[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1028007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Jan. 20, 2022

    Accepted: Feb. 25, 2022

    Published Online: May. 10, 2023

    The Author Email: Deyong Sun (sundeyong@nuist.edu.cn)

    DOI:10.3788/LOP220584

    Topics