Optics and Precision Engineering, Volume. 31, Issue 13, 1950(2023)
Cross-scene hyperspectral image classification combined spatial-spectral domain adaptation with XGBoost
[1] [1] 1黄鸿, 张臻, 李政英. 面向高光谱影像分类的深度流形重构置信网络[J]. 光学 精密工程, 2021, 29(8):1985-1998. doi: 10.37188/OPE.20212908.1985HUANGH, ZHANGZH, LIZH Y. Deep manifold reconstruction belief network for hyperspectral remote sensing image classification[J]. Opt. Precision Eng., 2021, 29(8):1985-1998.(in Chinese). doi: 10.37188/OPE.20212908.1985
[2] [2] 2樊星皓, 刘春雨, 金光, 等. 轻小型高分辨率星载高光谱成像光谱仪[J]. 光学 精密工程, 2021, 29(3): 463-473. doi: 10.37188/ope.20212903.0463FANX H, LIUCH Y, JING, et al. Small and high-resolution spaceborne hyperspectral imaging spectrometer[J]. Opt. Precision Eng., 2021, 29(3): 463-473.(in Chinese). doi: 10.37188/ope.20212903.0463
[3] QIN H M, ZHOU W Q, YAO Y et al. Estimating aboveground carbon stock at the scale of individual trees in subtropical forests using UAV LiDAR and hyperspectral data[J]. Remote Sensing, 13, 4969(2021).
[4] CRUZ-RAMOS C, GARCIA-SALGADO B P, REYES-REYES R et al. Gabor features extraction and land-cover classification of urban hyperspectral images for remote sensing applications[J]. Remote Sensing, 13, 2914(2021).
[5] LIU Q C, XIAO L, YANG J X et al. Content-guided convolutional neural network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 58, 6124-6137(2020).
[6] BINTA ZAKARIA Z, ISLAM M R. Hybrid 3DNet: hyperspectral image classification with spectral-spatial dimension reduction using 3D CNN[J]. International Journal of Computer Applications, 184, 6-11(2022).
[7] JIA S, JIANG S G, ZHANG S Y et al. Graph-in-graph convolutional network for hyperspectral image classification[J]. IEEE Transactions on Neural Networks and Learning Systems(2022).
[8] [8] 8刘桂雄, 黄坚. 基于标签预留Softmax算法的机器视觉检测鉴别语义分割迁移学习技术[J]. 光学 精密工程, 2022, 30(1):117-125. doi: 10.37188/OPE.20223001.0117LIUG X, HUANGJ. Transfer learning techniques for semantic segmentation of machine vision inspection and identification based on label-reserved Softmax algorithms[J]. Opt. Precision Eng., 2022, 30(1):117-125.(in Chinese). doi: 10.37188/OPE.20223001.0117
[9] HUANG Y, PENG J T, NING Y J et al. Graph embedding and distribution alignment for domain adaptation in hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 7654-7666(2021).
[10] CHEN J F, CHEN G, FANG B et al. Class-aware domain adaptation for coastal land cover mapping using optical remote sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 11800-11813(2021).
[11] DENG B, JIA S, SHI D M. Deep metric learning-based feature embedding for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 58, 1422-1435(2020).
[12] [12] 12赵春晖, 李彤, 冯收. 基于密集卷积和域自适应的高光谱图像分类[J]. 光子学报, 2021, 50(3): 0310001. doi: 10.3788/gzxb20215003.0310001ZHAOCH H, LIT, FENGSH. Hyperspectral image classification based on dense convolution and domain adaptation[J]. Acta Photonica Sinica, 2021, 50(3): 0310001.(in Chinese). doi: 10.3788/gzxb20215003.0310001
[13] [13] 13周钢, 郭福亮. 集成学习方法研究[J]. 计算技术与自动化, 2018, 37(4): 148-153. doi: 10.16339/j.cnki.jsjsyzdh.201804026ZHOUG, GUOF L. Research on ensemble learning[J]. Computing Technology and Automation, 2018, 37(4): 148-153.(in Chinese). doi: 10.16339/j.cnki.jsjsyzdh.201804026
[14] [14] 14陈伟民, 张凌, 宋冬梅, 等. 基于AdaBoost改进随机森林的高光谱图像地物分类方法研究[J]. 遥感技术与应用, 2018, 33(4): 612-620. doi: 10.11873/j.issn.1004-0323.2018.4.0612CHENW M, ZHANGL, SONGD M, et al. Research on hyperspectral imagery land cover classification method based on AdaBoost improved random forest[J]. Remote Sensing Technology and Application, 2018, 33(4): 612-620.(in Chinese). doi: 10.11873/j.issn.1004-0323.2018.4.0612
[15] [15] 15李润祥, 高小红, 汤敏. 基于双树复小波分解的Boosting集成学习土地覆被分类研究[J]. 遥感技术与应用, 2022, 37(2): 354-356, 358.LIR X, GAOX H, TANGM. Study on boosting ensemble learning land cover classification based on dual-tree complex wavelet transform[J]. Remote Sensing Technology and Application, 2022, 37(2): 354-356, 358.(in Chinese)
[18] CAO J M, LI Y Y, SUN M C et al. DO-conv: depthwise over-parameterized convolutional layer[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 31, 3726-3736(2022).
[19] PLAZA A, BENEDIKTSSON J A, BOARDMAN J W et al. Recent advances in techniques for hyperspectral image processing[J]. Remote Sensing of Environment, 113, S110-S122(2009).
[20] LI P, HU H, CHENG T et al. High-resolution multispectral image classification over urban areas by image segmentation and extended morphological profile[C], 3252-3254(2006).
[21] CHEN Y S, WANG Y, GU Y F et al. Deep learning ensemble for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12, 1882-1897(2019).
[22] WANG A L, LIU C Y, XUE D et al. Hyperspectral image classification based on cross-scene adaptive learning[J]. Symmetry, 13, 1878-1894(2021).
Get Citation
Copy Citation Text
Aili WANG, Shanshan DING, He LIU, Haibin WU, Yuji IWAHORI. Cross-scene hyperspectral image classification combined spatial-spectral domain adaptation with XGBoost[J]. Optics and Precision Engineering, 2023, 31(13): 1950
Category: Information Sciences
Received: Sep. 27, 2022
Accepted: --
Published Online: Jul. 26, 2023
The Author Email: Haibin WU (woo@hrbust.edu.cn)