Infrared and Laser Engineering, Volume. 51, Issue 7, 20210866(2022)
Development of infrared hyperspectral remote sensing imaging and application of gas detection (invited)
[1] Wu Hua, Li Xiujuan, Li Zhaoliang, et al. Hyperspectral thermal infrared remote sensing: Current status and perspectives[J]. National Remote Sensing Bulletin, 25, 24(2021).
[2] [2] Hackwell J A, Warren D W, Bongiovi R P, et al. LWIRMWIR imaging hyperspectral sens f airbne groundbased remote sensing [C]Imaging spectrometry II. International Society f Optics Photonics, 1996, 2819: 102107.
[3] Dai Jingjing, Zhao Longxian, Jiang Qi, et al. Review of thermal-infrared spectroscopy applied in geological ore exploration[J]. Acta Geologica Sinica, 94, 2520-2533(2020).
[4] Li Z L, Wu H, Wang N, et al. Land surface emissivity retrieval from satellite data[J]. International Journal of Remote Sensing, 34, 3084-3127(2013).
[5] Raissouni N, Sobrino J A. Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco[J]. International Journal of Remote Sensing, 21, 353-366(2000).
[6] Guo G, Liu B, Liu C. Thermal infrared spectral characteristics of bunker fuel oil to determine oil-film thickness and API[J]. Journal of Marine Science and Engineering, 8, 135(2020).
[7] Vaughan R G, Calvin W M, Taranik J V. SEBASS hyperspectral thermal infrared data: Surface emissivity measurement and mineral mapping[J]. Remote Sensing Environment, 85, 48-63(2003).
[8] [8] Lucey P G, Williams T J, Mignard M, et al. AHI: an airbne longwave infrared hyperspectral imager [C]Airbne Reconnaissance XXII. International Society f Optics Photonics, 1998, 3431: 3643.
[9] [9] Shepanski J, SLeahy S. The NGST long wave hyperspectral imaging spectrometer: sens hardware data processing [C]Infrared Technology Applications XXXII. International Society f Optics Photonics, 2006, 6206: 62062B.
[10] [10] Puckrin E, Turcotte C S, Lahaie P, et al. Airbne measurements in the infrared using FTIRbased imaging hyperspectral senss [C]ElectroOptical Remote Sensing, Photonic Technologies, Applications III. International Society f Optics Photonics, 2009, 7482: 74820S.
[11] [11] Warren D W, Boucher R H, Gutierrez D J, et al. MAKO: a highperfmance, airbne imaging spectrometer f the longwave infrared [C]Imaging Spectrometry XV. International Society f Optics Photonics, 2010, 7812: 78120N.
[12] Hall J L, Boucher R H, Buckland K N, et al. MAGI: A new high-performance airborne thermal-infrared imaging spectrometer for Earth science applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 53, 5447-5457(2015).
[13] Coudrain C, Bernhardt S, Caes M, et al. SIELETERS, an airborne infrared dual-band spectro-imaging system for measurement of scene spectral signatures[J]. Optics Express, 23, 16164-16176(2015).
[14] [14] Hook S J, Johnson W R, Abrams M J. NASA’s Hyperspectral Thermal Emission Spectrometer (HyTES) [M]Thermal Infrared Remote Sensing: Senss, Methods, Applications. Ddrecht, Holl: Springer, 2013: 93115.
[15] Li Chunlai, Liu Chengyu, Jin Jian, et al. Spectral measurement of minerals and gases based on airborne thermal-infrared hyperspectral imaging system[J]. Journal of Infrared and Millimeter Waves, 39, 767-777(2020).
[16] Liu C, Xu R, Xie F, et al. New Airborne thermal-infrared hyperspectral imager system: Initial validation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 4149-4165(2020).
[17] [17] Hall J L, Boucher R H, Buckl K N. Mako airbne thermal infrared imaging spectrometer: perfmance update [C]Imaging Spectrometry XXI. International Society f Optics Photonics. 2016, 9976: 997604.
[18] [18] The first airbne thermal infrared hyperspectral imager in China has been successfully developed [J]. Infrared, 2016, 37(5): 50. (in Chinese)
[19] Yuan L, He Z, Lv G, et al. Optical design, laboratory test, and calibration of airborne long wave infrared imaging spectrometer[J]. Optics Express, 25, 22440(2017).
[20] Wang Jianyu, Li Chunlai, Lv Gang, et al. The calibration of an infrared hyperspectral imager and its flight test validation in laboratory[J]. Journal of Infrared and Millimeter Waves, 36, 69-74(2017).
[21] Popa D, Udrea F. Towards integrated mid-infrared gas sensors[J]. Sensors, 19, 2076(2019).
[22] Hulley G C, Duren R M, Hopkins F M, et al. High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES)[J]. Atmospheric Measurement Techniques, 9, 2393-2408(2016).
[23] Manolakis D, Pieper M, Truslow E, et al. Longwave infrared hyperspectral imaging: Principles, progress, and challenges[J]. IEEE Geoscience and Remote Sensing Magazine, 7, 72-100(2019).
[24] Harsanyi J C, Chang C I. Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 32, 779-785(1994).
[25] [25] Pogzala D R, Messinger D W, Salvaggio C, et al. Gas plume species identification by regression analyses [C]Algithms Technologies f Multispectral, Hyperspectral, Ultraspectral Imagery X. SPIE, 2004, 5425: 583591.
[26] Lee J H, Yu H G, Park D J, et al. Characterization of hazardous gases using an infrared hyperspectral imaging system[J]. Instrumentation Science & Technology, 43, 469-484(2015).
[27] Sabbah S, Harig R, Rusch P, et al. Remote sensing of gases by hyperspectral imaging: system performance and measurements[J]. Optical Engineering, 51, 111717(2012).
[28] [28] Williams D J, Feldman B L, Williams T J, et al. Detection identification of toxic air pollutants using airbne LWIR hyperspectral imaging [C]Multispectral Hyperspectral Remote Sensing Instruments Applications II. International Society f Optics Photonics, 2005, 5655: 134141.
[29] Scafutto R D P M, Souza Filho C R, Riley D N, et al. Evaluation of thermal infrared hyperspectral imagery for the detection of onshore methane plumes: Significance for hydrocarbon exploration and monitoring[J]. International Journal of Applied Earth Observation and Geoinformation, 64, 311-325(2018).
[30] Scafutto R D P M, Souza Filho C R. Detection of heavy hydrocarbon plumes (Ethane, propane and Butane) using airborne longwave (7.6–13.5 μm) infrared hyperspectral data[J]. Fuel, 242, 863-870(2019).
[31] Funk C C, Theiler J, Roberts D A, et al. Clustering to improve matched filter detection of weak gas plumes in hyperspectral thermal imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 39, 1410-1420(2001).
[32] Patrick H, Christian P, Jeff H, et al. Nonlinear Bayesian algorithms for gas plume detection and estimation from hyper-spectral thermal image data[J]. Sensors, 7, 905-920(2007).
[33] [33] Broadwater J B, Spisz T S, Carr A K. Detection of gas plumes in cluttered environments using longwave infrared hyperspectral senss [C]Chemical, Biological, Radiological, Nuclear, Explosives (CBRNE) Sensing IX. SPIE, 2008, 6954: 193204.
[34] [34] Pieper M L, Manolakis D, Lockwood R, et al. Hyperspectral detection discrimination using the ACE algithm [C]Imaging Spectrometry XVI. SPIE, 2011, 8158: 92103.
[35] Schaum A. A uniformly most powerful detector of gas plumes against a cluttered background[J]. Remote Sensing of Environment, 260, 112443(2021).
[36] [36] Xu Y, Wu Z, Wei Z, et al. GAS plume detection in hyperspectral video sequence using low rank representation [C]2016 IEEE International Conference on Image Processing (ICIP). IEEE, 2016: 22212225.
[37] [37] Marrinan T, Beveridge J R, Draper B, et al. Flagbased detection of weak gas signatures in longwave infrared hyperspectral image sequences [C]Algithms Technologies f Multispectral, Hyperspectral, Ultraspectral Imagery XXII. International Society f Optics Photonics, 2016, 9840: 98401N.
[38] Tochon G, Chanussot J, Dalla Mura M, et al. Object tracking by hierarchical decomposition of hyperspectral video sequences: Application to chemical gas plume tracking[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 4567-4585(2017).
[39] Hirsch E, Agassi E. Detection of gaseous plumes in IR hyperspectral images—Performance analysis[J]. IEEE Sensors Journal, 10, 732-736(2010).
[40] Nam H, Kim J S, Kim H J, et al. Development of a radiative transfer model for the determination of toxic gases by Fourier transform–infrared spectroscopy with a support vector machine algorithm[J]. Instrumentation Science & Technology, 47, 264-277(2019).
[41] Hirsch E, Agassi E, Manor A. Using longwave infrared hyperspectral imaging for a quantitative atmospheric tracer monitoring in outdoor environments[J]. International Journal of Geosciences, 12, 233(2021).
[42] Gabrieli A, Wright R, Porter J N, et al. Applications of quantitative thermal infrared hyperspectral imaging (8–14 μm): Measuring volcanic SO2 mass flux and determining plume transport velocity using a single sensor[J]. Bulletin of Volcanology, 81, 1-11(2019).
[43] Gabrieli A, Wright R, Lucey P G, et al. Characterization and initial field test of an 8–14 μm thermal infrared hyperspectral imager for measuring SO2 in volcanic plumes[J]. Bulletin of Volcanology, 78, 1-13(2016).
[44] [44] Farley V, Vallières A, Chamberl M, et al. Perfmance of the FIRST: A longwave infrared hyperspectral imaging sens [C]Optically Based Biological Chemical Detection f Defence III. International Society f Optics Photonics, 2006, 6398: 63980T.
[45] [45] Savary S, Gagnon J P, Gross K, et al. Stoff identification quantification of flare emissions using infrared hyperspectral imaging [C]Advanced Environmental, Chemical, Biological Sensing Technologies VIII. SPIE, 2011, 8024: 165172.
[46] Cao Xifeng, Li Xiaoying, Luo Qi, et al. Review of temperature profile inversion of satellite-borne infrared hyperspectral sensor[J]. National Remote Sensing Bulletin, 25, 577-598(2021).
Get Citation
Copy Citation Text
Chunlai Li, Chengyu Liu, Jian Jin, Rui Xu, Gang Lv, Jianan Xie, Liyin Yuan, Shijie Liu, Jianyu Wang. Development of infrared hyperspectral remote sensing imaging and application of gas detection (invited)[J]. Infrared and Laser Engineering, 2022, 51(7): 20210866
Category: Invited paper
Received: Nov. 20, 2021
Accepted: --
Published Online: Dec. 20, 2022
The Author Email: Jianyu Wang (jywang@mail.sitp.ac.cn)