Chinese Journal of Lasers, Volume. 40, Issue 1, 101001(2013)
Advances in Femtosecond Laser Technologies with Photonic Crystal Fibers
[1] [1] J. C. Knight. Photonic crystal fibres[J]. Nature, 2003, 424(6950): 847~851
[2] [2] P. Russell. Photonic crystal fibers[J]. Science, 2003, 299(5605): 358~362
[3] [3] J. C. Knight, J. Broeng, T. A. Birks et al.. Photonic band gap guidance in optical fibers[J]. Science, 1998, 282(5393): 1476~1478
[4] [4] F. Luan, A. K. George, T. D. Hedley et al.. All-solid photonic bandgap fiber[J]. Opt. Lett., 2004, 29(20): 2369~2371
[5] [5] N. M. Litchinitser, A. K. Abeeluck, C. Headley et al.. Antiresonant reflecting photonic crystal optical waveguides[J]. Opt. Lett., 2002, 27(18): 1592~1594
[6] [6] R. F. Cregan, B. J. Mangan, J. C. Knight et al.. Single-mode photonic band gap guidance of light in air[J]. Science, 1999, 285(5433): 1537~1539
[7] [7] J. C. Knight, T. A. Birks, P. St. J. Russell et al.. All-silica single-mode optical fiber with photonic crystal cladding[J]. Opt. Lett., 1996, 21(19): 1547~1549
[8] [8] P. St. J. Russell. Photonic-crystal fibers[J]. J. Lightwave Tech., 2006, 24(12): 4729~4749
[9] [9] Yanfeng Li, Minglie Hu, Lu Chai et al.. Enhanced nonlinear effects in photonic crystal fibers[J]. Front. Phys. China, 2006, 1(2): 160~170
[11] [11] P. St J. Russell. Photonic crystal fibers: a historical account[J]. IEEE Lasers & Electro-Optics Society Newsletter, 2007, 21(5): 11~15
[12] [12] A. Apolonski, B. Povazay, A. Unterhuber et al.. Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses[J]. J. Opt. Soc. Am. B, 2002, 19(9): 2165~2170
[13] [13] A. M. Zheltikov. Let there be white light: supercontinuum generation by ultrashort laser pulses[J]. Physics Uspekhi, 2006, 49(6): 605~628
[14] [14] B. Schenkel, R. Paschoyya, U. Keller. Pulse compression with supercontinuun generation in microstructure fibers[J]. J. Opt. Soc. Am. B, 2005, 22(3): 687~693
[15] [15] O. Cohen, J. S. Lundeen, B. J. Smith et al.. Tailored photon-pair generation in optical fibers[J]. Phys. Rev. Lett., 2009, 102(12): 123603
[16] [16] J. K. Ranka, R. S. Windeler, A. J. Stentz. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm[J]. Opt. Lett., 2000, 25(1): 25~27
[17] [17] J. M. Dudley, G. Genty, S. Coen. Supercontinuum generation in photonic crystal fiber[J]. Rev. Mod. Phys., 2006, 78(4): 1135~1184
[19] [19] P. Domachuk, N. A.Wolchover, M. Cronin-Golomb et al.. Over 4000 nm bandwidth of mid-IR supercontinum generation in sub-centimeter segments of highly nonlinear tellurite PCFs[J]. Opt. Express, 2008, 16(10): 7161~7168
[20] [20] S. P. Stark, J. C. Travers, P. St. J. Russell. Extreme supercontinuum generation to the deep UV[J]. Opt. Lett., 2012, 37(5): 770~772
[21] [21] X. H. Fang, M. L. Hu, L. L. Huang et al.. Multiwatt octave-spanning supercontinuum generation in multicore photonic-crystal fiber[J]. Opt. Lett., 2012, 37(12): 2292~2294
[22] [22] Fang Xiaohui, Hu Minglie, Li Yanfeng et al.. Numerical analysis for structure optimization of Seven-core photonic crystal fibers[J]. Acta Physica Sinica, 2009, 58(4): 2495~2500
[23] [23] X. H. Fang, M. L. Hu, Y. F. Li et al.. Hybrid multicore photonic-crystal fiber for in-phase supermode selection[J]. Opt. Lett., 2010, 35(4): 493~495
[24] [24] C. K. Nielsen, K. G. Jespersen, S. R. Keiding. A 158 fs 5.3 nJ fiber-laser system at 1 μm using photonic bandgap fibers for dispersion control and pulse compression[J]. Opt. Express, 2006, 14(13): 6063~6068
[25] [25] A. Isomki, O. G. Okhotnikov. All-fiber ytterbium soliton mode-locked laser with dispersion control by solid-core photonic bandgap fiber[J]. Opt. Express, 2006, 14(10): 4368~4373
[26] [26] A. Bétourné, A. Kudlinski, G. Bouwmans et al.. Control of supercontinuum generation and soliton self-frequency shift in solid-core photonic bandgap fibers[J]. Opt. Lett., 2009, 34(20): 3083~3085
[27] [27] B. W. Liu, M. L. Hu, X. H. Fang et al.. Tunable bandpass filter with solid-core photonic bandgap fiber and bragg fiber[J]. IEEE Photon. Tech. Lett., 2008, 20(8): 581~583
[28] [28] B. Hitz. Easy-to-tune all-fiber bandpass filter[J]. Phonics Spectra, 2008, 94(6), http://www.photonics.com/Article.aspx AID=33897
[29] [29] F. Benabid, F. Couny, J. C. Knight et al.. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres[J]. Nature, 2005, 434(7032): 488~491
[30] [30] G. Humbert, J. C. Knight, G. Bouwmans et al.. Hollow core photonic crystal fibers for beam delivery[J]. Opt. Express, 2004, 12(8): 1477~1484
[31] [31] D. G. Ouzounov, F. R. Ahmad, D. Müller et al.. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers[J]. Science, 2003, 301(5640): 1702~1704
[32] [32] F. Luan, J. C. Knight, P. St. J. Russell et al.. Femtosecond soliton pulse delivery at 800 nm wavelength in hollow-core photonic bandgap fibers[J]. Opt. Express, 2004, 12(5): 835~840
[33] [33] P. J. Mosley, W. C. Huang, M. G. Welch et al.. Ultrashort pulse compression and delivery in a hollow-core photonic crystal fiber at 540 nm wavelength[J]. Opt. Lett., 2010, 35(21): 3589~3591
[34] [34] Y. Y. Wang, X. Peng, M. Alharbi et al.. Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression[J]. Opt. Lett., 2012, 37(15): 3111~3113
[35] [35] J. Limpert, T. Schreiber, S. Nolte et al.. All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber[J]. Opt. Express, 2003, 11(24): 3332~3337
[37] [37] R. F. Cregan, J. C. Knight, P. St. J. Russell et al.. Distribution of spontaneous emission from an Er3+-doped photonic crystal fiber[J]. J. Lightwave Tech., 1999, 17(11): 2138~2141
[38] [38] W. J. Wadworth, J. C. Knight, W. H. Reeves et al.. Yb3+-doped photonic crystal fibre laser[J]. Electron. Lett., 2000, 36(17): 1452~1454
[39] [39] N. Modsching, P. Kadwani, R. A. Sims et al.. Lasing in thulium-doped polarizing photonic crystal fiber[J]. Opt. Lett., 2011, 36(19): 3873~3875
[40] [40] M. Moenster, P. Was, G. Steinmeyer et al.. Mode-locked Nd-doped microstructure fiber laser[C]. Conference on Lasers and Electro-Optics (CLEO), 2004. CThX4
[41] [41] I. Razdobreev, H. EI. Hamzaoui, L. Bigot et al.. Optical properties of bismuth-doped silica core photonic crystal fiber[J]. Opt. Express, 2010, 18(19): 19479~19484
[42] [42] J. C. Knight. Photonic crystal fibers and fiber lasers (invited)[J]. J. Opt. Soc. Am. B, 2007, 24(8): 1661~1668
[44] [44] J. Limpert, F. Rser, T. Schreiber et al.. High-power ultrafast fiber laser systems[J]. IEEE J. Sel. Topics Quantum Electron., 2006, 12(2): 233~244
[45] [45] K. Furusawa, T. M. Monro, P. Petropoulos et al.. Modelocked laser based on ytterbium doped holey fibre[J]. Electron. Lett., 2001, 37(9): 560~561
[46] [46] M. Moenster, P. Glas, G. Steinmeyer et al.. Femtosecond neodymium-doped microstructure fiber laser[J]. Opt. Express, 2005, 13(21): 8671~8677
[47] [47] M. Moenster, P. Glas, R. Iliew et al.. Microstructure fiber soliton laser[J]. IEEE Photon. Tech. Lett., 2006, 18(23): 2502~2504
[48] [48] A. Isomki, O. G. Okhotnikov. Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber[J]. Opt. Express, 2006, 14(20): 9238~9243
[49] [49] C. M. Ouyang, L. Chai, M. L. Hu et al.. Impact of spectral filtering on a weak breathing laser based on AS-Yb-PBGF with large net normal dispersion cavity[J]. Opt. Commun., 2008, 281(23): 5846~5850
[50] [50] C. Lecaplain, L. Rasoloniaina, J. Michaud et al.. Mode-locked all-solid photonic bandgap fiber laser[C]. Advanced Solid-State Photonics (ASSP), 2011. ATuB11
[51] [51] C. Lecaplain, L. Rasoloniaina, O. N. Egorova et al.. Mode-locked all-solid photonic bandgap fiber laser[J]. Appl. Phys. B, 2012, 107(2): 4939~4941
[52] [52] J. H. V. Price, K. Furusawa, T. M. Monro et al.. Tunable, femtosecond pulse source operating in the range 1.06~1.33 mm based on an Yb3+-doped holey fiber amplifie[J]. J. Opt. Soc. Am. B, 2002, 19(6): 1286~1294
[53] [53] W. J. Wadsworth, R. M. Percival, G. Bouwmans et al.. High power air-clad photonic crystal fibre laser[J]. Opt. Express, 2003, 11(1): 48~53
[54] [54] J. Limpert, O. Schmidt, J. Rothhardt et al.. Extended single-mode photonic crystal fiber lasers[J]. Opt. Express, 2006, 14(7): 2715~2720
[55] [55] K. Furusawa, A. Malinowski, J. H. V. Price et al.. Cladding pumped ytterbium-doped fiber laser with holey inner and outer cladding[J]. Opt. Express, 2001, 9(13): 714~720
[56] [56] T. Schreiber, F. Rser, O. Schmidt et al.. Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity[J]. Opt. Express, 2005, 13(19): 7621~7630
[57] [57] J. Limpert, T. Schreiber, S. Nolte et al.. High-power air-clad large-mode-area photonic crystal fiber laser[J]. Opt. Express, 2003, 11(7): 818~823
[58] [58] NKT Photonincs[OL]. http://www.nktphotonics.com
[59] [59] J. C. Knight. Photonic crystal fibers and fiber lasers (invited)[J]. J. Opt. Soc. Am. B, 2007, 24(8): 1661~1668
[60] [60] D. J. Richardson, J. Nilsson, W. A. Clarkson. High power fiber lasers: current status and future perspectives (invited)[J]. J. Opt. Soc. Am. B, 2010, 27(11): 63~92
[61] [61] B. Orta, J. Limpert, A. Tünnermann. High-energy femtosecond Yb-doped fiber laser operating in the anomalous dispersion regime[J]. Opt. Lett., 2007, 32(15): 2149~2151
[62] [62] C. Lecaplain, C. Chédot, A. Hideur et al.. High-power all-normal-dispersion femtosecond pulse generation from a Yb-doped large-mode-area microstructure fiber laser[J]. Opt. Lett., 2007, 32(18): 2738~2740
[63] [63] B. Orta, C. Lecaplain, A. Hideur et al.. Passively mode-locked single-polarization microstructure fiber laser[J]. Opt. Express, 2008, 16(3): 2122~2128
[64] [64] C. Lecaplain, B. Orta, A. Hideur. High-energy femtosecond pulses from a dissipative soliton fiber laser[J]. Opt. Lett., 2009, 34(23): 3731~3733
[65] [65] S. Lefranois, K. Kieu, Y. Deng et al.. Scaling of dissipative soliton fiber lasers to megawatt peak powers by use of large-area photonic crystal fiber[J]. Opt. Lett., 2010, 35(10): 1569~1571
[66] [66] M. Baumgartl, B. Orta, C. Lecaplain et al.. Sub-80 fs dissipative soliton large-mode-area fiber laser[J]. Opt. Lett., 2010, 35(13): 2311~2313
[68] [68] Y. J. Song, M. L. Hu, C. L. Wang et al.. Environmentally stable, high pulse energy Yb-doped large-mode-area photonic crystal fiber laser operating in the soliton-like regime[J]. IEEE Photon. Tech. Lett., 2008, 20(13): 1088~1090
[69] [69] Y. J. Song, M. L. Hu, C. Zhang et al.. High pulse energy femtosecond large-mode-area photonic crystal fiber laser[J]. Chin. Sci. Bull., 2008, 53(23): 3741~3745
[70] [70] Y. J. Song, M. L. Hu, C. L. Gu et al.. Mode-locked Yb-doped large-mode-area photonic crystal fiber laser operating in the vicinity of zero cavity dispersion[J]. Laser Phys. Lett., 2010, 7(3): 230~235
[71] [71] Zhang Dapeng, Hu Minglie, Xie Chen et al.. A high power photonic crystal fiber laser oscillator based on nonlinear polarization rotation mode-locking[J]. Acta Physica Sinica, 2012, 61(4): 044206
[72] [72] C. Xie, M. L. Hu, D. P. Zhang et al.. Generation of 25-fs high energy pulses by SPM-induced spectral broadening in a photonic crystal fiber laser system[J]. IEEE Photon. Tech. Lett., 2012, 24(7): 551~553
[73] [73] L. Shah, Z. Liu, I. Hartl et al.. High energy femtosecond Yb cubicon fiber amplifier[J]. Opt. Express, 2005, 13(12): 4717~4722
[74] [74] F. Rser, J. Rothhard, B. Ortac et al.. 131 W 220 fs fiber laser system[J]. Opt. Lett., 2005, 30(20): 2754~2756
[75] [75] F. Rser, D. Schimpf, O. Schmidt et al.. 90 W average power 100 J energy femtosecond fiber chirped-pulse amplification system[J]. Opt. Lett., 2007, 32(15): 2230~2232
[76] [76] T. Eidam, F. Rser, O. Schmidt et al.. 57 W, 27 fs pulses from a fiber laser system using nonlinear compression[J]. Appl. Phys. B, 2008, 92(1): 9~12
[77] [77] T. Eidam, S. Hdrich, F. Rser et al.. A 325-W-average-power fiber CPA system delivering sub-400 fs pulses[J]. IEEE J. Sel. Topics Quantum Electron., 2009, 15(1): 187~190
[78] [78] T. Schreiber, C. K. Nielsen, B. Ortac et al.. Microjoule-level all-polarization-maintaining femtosecond fiber source[J]. Opt. Lett., 2006, 31(5): 574~576
[79] [79] Liu Bowen, Hu Minglie, Song Youjian et al.. Sub-100 fs high power Yb-doped single polarization large-mode-area photonic crystal fiber laser amplifier[J]. Acta Physica Sinica, 2008, 57(11): 6921~6925
[82] [82] B. W. Liu, M. L. Hu, X. H. Fang et al.. High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency shifter femtosecond laser system and its applications for material microprocessing[J]. Laser Phys. Lett., 2009, 6(1): 44~48
[83] [83] C. Xie, B. W. Liu, H. L. Niu et al.. Vector-dispersion compensation and pulse pedestal cancellation in a femtosecond nonlinear amplification fiber laser system[J]. Opt. Lett., 2011, 36(21): 4149~4151
[84] [84] J. Limpert, F. Rser, D. N. Schimpf et al.. High repetition rate gigawatt peak power fiber laser systems: challenges, design, and experiment[J]. IEEE J. Sel. Topics Quantum Electron., 2009, 15(1): 159~169
[85] [85] J. Limpert, N. Deguil-Robin, I. Manek-Hnninger et al.. High-power rod-type photonic crystal fiber laser[J]. Opt. Express, 2005, 13(4): 1055~1058
[86] [86] B. Orta, O. Schmidt, T. Schreiber et al.. High-energy femtosecond Yb-doped dispersion compensation free fiber laser[J]. Opt. Express, 2007, 15(17): 10725~10732
[87] [87] B. Orta, M. Baumgartl, J. Limpert et al.. Approaching microjoule-level pulse energy with mode-locked femtosecond fiber lasers[J]. Opt. Lett., 2009, 34(10): 1585~1587
[88] [88] C. Lecaplain, B. Orta, G. Machinet et al.. High-energy femtosecond photonic crystal fiber laser[J]. Opt. Lett., 2009, 35(19): 3156~3158
[89] [89] F. Rser, T. Eidam, J. Rothhardt et al.. Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system[J]. Opt. Lett., 2007, 32(24): 3495~3497
[90] [90] J. Boullet, Y. Zaouter, J. Limpert et al.. High-order harmonic generation at a megahertz-level repetition rate directly driven by an ytterbium-doped-fiber chirped-pulse amplification system[J]. Opt. Lett., 2009, 34(9): 1489~1491
[91] [91] C. J. Saraceno, O. H. Heckl, C. R. E. Baer et al.. Pulse compression of a high-power thin disk laser using rod-type fiber amplifiers[J]. Opt. Express, 2011, 19(2): 1395~1407
[92] [92] Y. Zaouter, D. N. Papadopoulos, M. Hanna et al.. Stretcher-free high energy nonlinear amplification of femtosecond pulses in rod-type fibers[J]. Opt. Lett., 2008, 33(2): 107~109
[93] [93] C. Jauregui, T. Eidam, J. Limpert et al.. Impact of modal interference on the beam quality of high-power fiber amplifiers[J]. Opt. Express, 2011, 19(4): 3258~3271
[94] [94] J. Limpert, F. Stutzki, F. Jansen et al.. Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalization[J]. Light: Science & Applications, 2012, 1(8):1~5
[95] [95] F. Jansen, F. Stutzki, H. J. Otto et al.. The influence of index-depressions in core-pumped Yb-doped large pitch fibers[J]. Opt. Express, 2010, 18(26): 26834~26842
[96] [96] F. Stutzki, F. Jansen, T. Eidam et al.. High average power large-pitch fiber amplifier with robust single-mode operation[J]. Opt. Lett., 2011, 36(5): 689~691
[97] [97] M. Baumgartl, F. Jansen, F. Stutzki et al.. High average and peak power femtosecond large-pitch photonic-crystal-fiber laser[J]. Opt. Lett., 2011, 36(2): 244~246
[98] [98] M. Baumgartl, C. Lecaplain, A. Hidear et al.. 66 W average power from a micreojoule class sub-100 fs fiber oscillator[J]. Opt. Lett., 2011, 37(10): 1640~1642
[99] [99] T. Eidam, J. Rothhardt, F. Stutzki et al.. Fiber chirped-pulse amplification system emitting 3.8 GW peak power[J]. Opt. Express, 2011, 19(1): 255~260
[100] [100] P. K. Cheo, A. Liu, G. G. King. A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array[J]. IEEE Photon. Tech. Lett., 2001, 13(5): 439~441
[101] [101] Y. Hu, P. K. Cheo, G. G. King. Fundamental mode operation of a 19-core phaselocked Yb-doped fiber amplifier[J]. Opt. Express, 2004, 12(25): 6230~6239
[102] [102] P. M. Blanchard, J. G. Burnett, G. R. G. Erry et al.. Two-dimensional bend sensing with a single, multi-core optical fibre[J]. Smart Mater. Struct., 2000, 9(2): 132~140
[103] [103] L. Michaille, C. R. Bennett, D. M. Taylor et al.. Phase locking and supermode selection in multicore photonic crystal fiber lasers with a large doped area[J]. Opt. Lett., 2005, 30(13): 1668~1670
[104] [104] L. Michaille, D. M. Taylor, C. R. Bennett et al.. Characteristics of a Q-switched multicore photonic crystal fiber laser with a very large mode field area[J]. Opt. Lett., 2008, 33(1): 72~74
[105] [105] L. Michaille, C. R. Bennett, D. M. Taylor et al.. Multicore photonic crystal fiber lasers for high power/energy applications[J]. IEEE J. Sel. Topics Quantum Electron., 2009, 15(2): 328~336
[106] [106] C. C. Wang, F. Zhang, R. Geng et al.. Photonic crystal fiber for fundamental mode operation of multicore fiber lasers and amplifiers[J]. Opt. Commun., 2008, 281(21): 5364~5371
[107] [107] A. Mafi, J. V. Moloney. Shaping modes in multicore photonic crystal fibers[J]. IEEE Photon. Tech. Lett., 2005, 17(2): 348~350
[108] [108] X. H. Fang, M. L. Hu, Y. F. Li et al.. Spatially flat in-phase supermode in multicore hybrid photonic crystal fiber[J]. J. Lightwave Tech., 2011, 29(22): 3428~3432
[109] [109] X. H. Fang, M. L. Hu, Y. F. Li et al.. Numerical analysis of mode locking in multi-core photonic crystal fiber[J]. Chinese Sci. Bull., 2010, 55(18): 1864~1869
[110] [110] X. H. Fang, M. L. Hu, C. Xie et al.. High pulse energy mode-locked multicore photonic crystal fiber laser[J]. Opt. Lett., 2011, 36(6): 1005~1007
[111] [111] X. H. Fang, M. L. Hu, B. W. Liu et al.. Generation of 150 MW, 110 fs pulses by phase-locked amplification in multicore photonic crystal fiber[J]. Opt. Lett., 2010, 35(14): 2326~2328
[112] [112] M. L. Hu, X. H. Fang, B. W. Liu et al.. Multicore photonic-crystal-fiber platform for high-power all-fiber ultrashort-pulse sources[J]. J. Modern Optics, 2011, 58(21): 1966~1970
[113] [113] T. Eidam, S. Hanf, E. Seise et al.. Femtosecond fiber CPA system emitting 830 W average output power[J]. Opt. Lett., 2010, 35(2): 94~96
[114] [114] A. Tünnermann, T. Schreiber, J. Limpert. Fiber lasers and amplifiers: an ultrafast performance evolution[J]. Appl. Opt., 2010, 49(25): 71~78
[115] [115] F. Liu, Y. J. Song, Q. R. Xing et al.. Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier[J]. IEEE Photon. Tech. Lett., 2010, 22(11): 814~816
[116] [116] H. G. Liu, M. L. Hu, B. W. Liu et al.. Compact high-power multiwavelength photoniccrystal-fiber-based laser source of femtosecond pulses in the infrared-visible-ultraviolet range[J]. J. Opt. Soc. Am. B, 2010, 27(11): 2284~2289
[117] [117] J. Rothhardt, S. Demmler, S. Hdrich et al.. Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate[J]. Opt. Express, 2012, 20(10): 10870~10878
Get Citation
Copy Citation Text
Chai Lu, Hu Minglie, Fang Xiaohui, Liu Bowen, Song Youjian, Li Yanfeng, Wang Qingyue. Advances in Femtosecond Laser Technologies with Photonic Crystal Fibers[J]. Chinese Journal of Lasers, 2013, 40(1): 101001
Category: laser devices and laser physics
Received: Aug. 31, 2012
Accepted: --
Published Online: Apr. 12, 2013
The Author Email: Lu Chai (lu-chai@tju.edu.cn)