Chinese Journal of Liquid Crystals and Displays, Volume. 38, Issue 11, 1455(2023)

Infrared dim-small target detection under complex background based on attention mechanism

Ying LIU1,2, Hai-jiang SUN1、*, and Yong-xian ZHAO1,2
Author Affiliations
  • 1Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China
  • 2University of Chinese Academy of Sciences,Beijing 100049,China
  • show less
    Figures & Tables(20)
    YOLOv5 network model structure
    Optimized infrared dim-small target detection frame
    Schematic diagram of the attention mechanism.(a)Channel attention module;(b)Spatial attention module;(c)SimAM attention module.
    Structure diagram of network after SimAMC3 module is introduced
    SimAMC3 module
    Optimized infrared dim-small target detection network model
    Schematic diagram of DIOU
    Sample images of typical scenes in NUAA-SIRST.(a)Cloud background;(b)City background;(c)Sea background.
    Sample images of typical scenes in NUDT-SIRST.(a)Cloud background;(b)City background;(c)Sea background;(d)Field background;(e)Highlight background.
    Loss decline curve
    Comparison of test results.(a)IOU inhibition criteria;(b)DIOU inhibition criteria.
    Experimental effect of traditional algorithm.(a)Original image with labelled targets;(b)Top Hat;(c)MLCM;(d)IPI.
    Training model parameter.(a)Mean average precision;(b)Precision;(c)Recall.
    Visual test effect diagram of each network model.(a)Faster R-CNN;(b)SSD;(c)YOLOv3;(d)YOLOv5;(e)Ours;(f)Original image with labelled targets.
    • Table 1. Main characteristics of the data set selected in this paper

      View table
      View in Article

      Table 1. Main characteristics of the data set selected in this paper

      数据集数据类型图像描述图像数量
      NUAA-SIRST真实红外图像

      背景:云层、城市、海面;

      目标:亮度微弱,有强光源干扰

      427
      NUDT-SIRST合成红外图像

      背景:云层、城市、海面、旷野、高亮场景;

      目标:亮度微弱,有强光源干扰

      1 327
    • Table 2. Sample classification

      View table
      View in Article

      Table 2. Sample classification

      正类负类
      被检测到True Positives(TP)False Positives(FP)
      未被检测到False Negatives(FN)True Negatives(TN)
    • Table 3. Infrared dim-small target data set classification

      View table
      View in Article

      Table 3. Infrared dim-small target data set classification

      DatasetTotalTrainingValTest
      NUAA-SIRST4272578585
      NUDT-SIRST1 327797265265
    • Table 4. Experimental configuration

      View table
      View in Article

      Table 4. Experimental configuration

      ParameterConfiguration
      OSUbuntu 20.04
      ProcessorIntel(R)Core(TM)i7-9700K
      RAM64.0 GB
      GPUNVIDIA TITAN RTX
      GPU AccelerationCUDA 11.2
    • Table 5. Ablation experiments

      View table
      View in Article

      Table 5. Ablation experiments

      GroupSimAMC3Add HeadDIOU_NMSNUAA-SIRSTNUDT-SIRST
      P/%R/%mAP@0.5P/%R/%mAP@0.5
      188.788.891.293.792.194.3
      291.790.893.195.693.995.9
      395.897.997.897.296.498.6
      496.997.798.397.997.199.1
    • Table 6. Contrast experiment

      View table
      View in Article

      Table 6. Contrast experiment

      NetworkNUAA-SIRSTNUDT-SIRST
      P/%R/%mAP@0.5/%P/%R/%mAP@0.5/%
      Faster R-CNN33.646.436.339.749.243.6
      SSD62.854.366.370.566.172.6
      YOLOv378.971.282.682.980.685.0
      YOLOv588.788.891.293.792.194.3
      Ours96.997.798.397.997.199.1
    Tools

    Get Citation

    Copy Citation Text

    Ying LIU, Hai-jiang SUN, Yong-xian ZHAO. Infrared dim-small target detection under complex background based on attention mechanism[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(11): 1455

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jan. 6, 2023

    Accepted: --

    Published Online: Nov. 29, 2023

    The Author Email: Hai-jiang SUN (sunhaijiang@126.com)

    DOI:10.37188/CJLCD.2023-0030

    Topics