Journal of Infrared and Millimeter Waves, Volume. 38, Issue 2, 154(2019)

0.68 THz and 1.00 THz triplers based on discrete Schottky diodes and quartz glass

JIANG Jun1...2, CHEN Peng1,2, HE Yue1,2, TIAN Yao-Ling1,2, HAO Hai-Long2, CHENG Bin-Bin1,2, and LIN Chang-Xing12 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(23)

    [1] [1] Akyildiz I F, Jornet J M, Han C. Terahertz band: Next frontierfor wireless communications[J]. Phys. Commun., 2014, 12: 16-32.

    [2] [2] Mehdi I, Chattopadhyay G, Schlecht E, et al. Terahertz multiplier circuits[J]. IEEE MTT-S Int.Microw. Symp. Dig., 2006, 341-344.

    [3] [3] Treuttela J, Schlechta E, Silesa J, et al. A 2 THz Schottky solid-state heterodyne receiver for atmosphericstudies[J]. Proc. of SPIE. 2016, 9914:1O-1-9.

    [4] [4] Siegel P H. THz technology[J]. IEEE Trans. Microw.Theory Techn.2002, 50(3):910-928.

    [5] [5] Chattopadhyay G. Technology, capabilities,and performance of low power terahertzsources[J]. IEEE Trans. THz Sci. Technol., 2011, 1(1): 33-53.

    [6] [6] Radisic V, Leong K M K H, Mei X B, et al. Power amplification at 0.65 THz using InP HEMTs[J]. IEEE Transactions on Mircrowave Theory and Techniques, 2012, 60(3):724-729.

    [7] [7] Li Y, Wang L G, Xiong Y Z. A frequency doubler/modulator with 45 dBm output power at 170 GHz using SiGe HBTs[J]. Microwave & Wireless Components Letters IEEE, 2015, 25(3):181-183.

    [8] [8] Suzuki S, Asada M, Teranishi A, et al. Fundamental oscillation of resonant tunneling diodes above1.00 THz at room temperature[J]. Appl. Phys. Lett.,2010, 97(24):42102.

    [9] [9] Malko A, Bryllert T, Vukusic J, et al. A 474 GHz HBV frequencyquintupler integrated on a 20 μm thicksilicon substrate[J]. IEEE Trans. THz Sci.Technol., 2014, 5(1):85-91.

    [10] [10] Crowe T W, Foley B, Durant S, et al. Instrumentation for metrology from MMW to THz[C]. Presented at the 4th UK/EU-China Workshop on Millim. Wave and THz Technol. (4th UCMMT), Glasgow, U.K., Sep. 2011.

    [11] [11] Virginia Diodes Inc. (Online). www.vadiodes.com/en/products/custom-transmitters.

    [12] [12] Pardo D, Grajal J, Pérez-Moreno C G, et al. An assessment of available models for the design of Schottky-based multipliers up to THz frequencies[J]. IEEE Transactions on Terahertz Science & Technology, 2017, 4(2):277-287.

    [13] [13] Champlin K S. Eisenstein G. Cutoff frequency of submillimeter Schottky barrier diodes[J]. IEEE Transactions on Microwave Theory and Techniques, 1978, 26:31-34.

    [14] [14] Schlecht E. A high-power wideband cryogenic 200 GHz Schottky ‘Substrateless’ multiplier: Modeling, design and results[C]. In IEEE MTT-S Int. Microw. Symp. Dig., 2001.

    [15] [15] Chattopadhyay G. Schlecht E, Gill J. A broadband 800 GHz Schottky balanced doubler[J]. IEEE Microw. Wireless Compon. DOI: 10.1109/7260.993286

    [16] [16] Porterfield D W, Crowe T W, Bradley R F, et al. A high-power fixed-tuned millimeter-wave balanced frequency doubler[J]. IEEE Trans. Microw. Theory Techn., 1999, 47(4): 419-425.

    [17] [17] Zhang X, Yu H, Xu H, et al. Design of a high-performance balanced frequency tripler at 94 GHz[C]. Radar Conference 2013, IET International. IET, 2013:1-3.

    [18] [18] Erickson N, Tuovinen J A. Waveguide tripler for 720-880 GHz[C]. International Symposium on Space Terahertz Technology. Sixth International Symposium on Space Terahertz Technology, 1995:191-198.

    [19] [19] Maiwald F, Schlecht E, Maestrini A, et al. THz frequency multiplier chains based on planar Schottky diodes[J]. Proc. SPIE, 2003, 4855:447-458.

    [20] [20] Bruston J, Maestrini A, Pukala D, et al. A 1.2 THz planar tripler using GaAs membrane based chips[C]. In Proc. 12th Int. Symp. Space Terahertz Tech., San Diego, CA, USA, Dec. 2001:310.

    [21] [21] Maestrini A, Bruston J, Pukala D, et al. Performance of a 1.2 THz frequency tripler using a GaAs frameless membrane monolithic circuit[C]. In IEEE MTT-S Int. Microw. Symp. Dig., Phoenix, AZ, USA, May 2001: 1657-1660.

    [22] [22] Xin H, Cheng X, Deng J, et al. Design of a novel 0.325~0.5 THz tripler based on a customized TMIC[C]. Millimetre Waves and Terahertz Technologies. IEEE, 2017:86-88.

    [23] [23] http://vadiodes.com/en/products/custom-transmitters

    Tools

    Get Citation

    Copy Citation Text

    JIANG Jun, CHEN Peng, HE Yue, TIAN Yao-Ling, HAO Hai-Long, CHENG Bin-Bin, LIN Chang-Xing. 0.68 THz and 1.00 THz triplers based on discrete Schottky diodes and quartz glass[J]. Journal of Infrared and Millimeter Waves, 2019, 38(2): 154

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jun. 21, 2018

    Accepted: --

    Published Online: May. 10, 2019

    The Author Email:

    DOI:10.11972/j.issn.1001-9014.2019.02.005

    Topics