Electro-Optic Technology Application, Volume. 36, Issue 5, 1(2021)

Review of 589 nm Sodium Laser Guide Stars (Invited)

YOU Wei1,2, YANG Xue-zong1, CHEN Wei-biao1,2, and FENG Yan1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(110)

    [1] [1] Babcock H W. The possibility of compensating astronomi. cal seeing[J]. Publications of the Astronomical Society of the Pacific, 1953, 65(386): 229-236.

    [2] [2] Foy R, Labeyrie A. Feasibility of adaptive telescope with laser probe[J]. Astronomy and Astrophysics, 1985, 152: L29-L31.

    [3] [3] Gardner C S, Welsh B M, Thompson L A. Design and per.formance analysis of adaptive optical telescopes using las.ing guide stars[J]. Proceedings of the IEEE, 1990, 78(11): 1721-1743.

    [4] [4] Vondrak T, Plane J M C, Broadley S, et al. A chemical model of meteoric ablation[J]. Atmospheric Chemistry and Physics, 2008, 8(23): 7015-7031.

    [5] [5] Pfrommer T, Hickson P. High-resolution lidar observa. tions of mesospheric sodium and implications for adaptiveoptics[J]. JOSA A, 2010, 27(11): A97-A105.

    [6] [6] Thompson L A, Gardner C S. Experiments on laser guidestars at Mauna Kea Observatory for adaptive imaging in as.tronomy[J]. Nature, 1987, 328(6127): 229-231.

    [7] [7] Jelonek M P, Fugate R Q, Lange W J, et al. Characteriza. tion of artificial guide stars generated in the mesospheric sodium layer with a sum-frequency laser[J]. JOSA A, 1994, 11(2): 806-812.

    [8] [8] Kuntschner H, Amico P, Kolb J, et al. Operational concept of the VLT′s adaptive optics facility and its instruments [C]//Observatory Operations: Strategies, Processes, and Systems IV, International Society for Optics and Photon. ics, 2012, 8448: 844808.

    [9] [9] Hayano Y, Saito Y, Ito M, et al. The laser guide star facility for Subaru Telescope[C]//Advances in Adaptive Optics II, International Society for Optics and Photonics, 2006, 6272: 627247.

    [10] [10] Hankla A K, Bartholomew J, Groff K, et al. 20-W and 50-W solid-state sodium beacon guide star laser systems for the Keck I and Gemini South telescopes[C]//Advances in Adaptive Optics II, International Society for Optics and Photonics, 2006, 6272: 62721G.

    [11] [11] Max C E, Olivier S S, Friedman H W, et al. Image improve. ment from a sodium-layer laser guide star adaptive optics system[J]. Science, 1997, 277(5332): 1649-1652.

    [12] [12] Jin K, Wei K, Feng L, et al. Photon return on-sky test of pulsed sodium laser guide star with D2b repumping[J]. Pub. lications of the Astronomical Society of the Pacific, 2015, 127(954): 749.

    [13] [13] Hillman P D, Drummond J D, Denman C A, et al. Simplemodel, including recoil, for the brightness of sodium guidestars created from CW single frequency fasors and compar.ison to measurements[C]//Adaptive Optics Systems, Inter. national Society for Optics and Photonics, 2008, 7015: 70150L.

    [14] [14] Jacobsen B P, Martinez T, Angel J R P, et al. Field evalua. tion of two new continuous-wave dye laser systems opti.mized for sodium beacon excitation[C]//Adaptive Optics inAstronomy, International Society for Optics and Photonics,1994, 2201: 342-351.

    [15] [15] Milonni P W, Fearn H, Telle J M, et al. Theory of continu. ous-wave excitation of the sodium beacon[J]. JOSA A, 1999, 16(10): 2555-2566.

    [16] [16] Holzl.hner R, Rochester S M, Calia D B, et al. Optimiza. tion of cw sodium laser guide star efficiency[J]. Astronomy & Astrophysics, 2010, 510: A20.

    [17] [17] Bian Q, Bo Y, Zuo J, et al. Investigation of return photons from sodium laser beacon excited by a 40-watt facility-class pulsed laser for adaptive optical telescope applica. tions[J]. Scientific Reports, 2018, 8(1):1-10.

    [18] [18] Happer W. Optical pumping[J]. Reviews of Modern Phys. ics, 1972, 44(2): 169.

    [19] [19] McClelland J J, Kelley M H. Detailed look at aspects of op. tical pumping in sodium[J]. Physical Review A, 1985, 31(6): 3704.

    [20] [20] Holzl.hner R, Calia D B, Hackenberg W. Physical optics modeling and optimization of laser guide star propagation[C]//Adaptive Optics Systems, International Society for Op.tics and Photonics, 2008, 7015: 701521.

    [21] [21] Kane T J, Hillman P D, Denman C A. Pulsed laser archi.tecture for enhancing backscatter from sodium[C]//Adap. tive Optics Systems IV, International Society for Optics and Photonics, 2014, 9148: 91483G.

    [22] [22] Zhang L, Jiang H, Cui S, et al. Versatile Raman fiber laser for sodium laser guide star[J]. Laser&Photonics Reviews, 2014, 8(6): 889-895.

    [23] [23] Li L, Zhang S, Hua W, et al. Experimental demonstration of brighter sodium resonant scattering with 1.7 GHz side. band repumping for long pulse laser[C]//Adaptive Optics Systems IV, International Society for Optics and Photon. ics, 2014, 9148: 91483T.

    [24] [24] Denman C, Moore G, Drummond J, et al. Two-frequencysodium guidestar excitation at the starfire optical range[C]//CFAO, workshop, 2006.

    [25] [25] Prasad P V, Storey P. Magnetic resonance imaging[M]//Mo.lecular Biomethods Handbook, Humana Press, 2008: 949-973.

    [26] [26] Moussaoui N, Holzl.hner R, Hackenberg W, et al. Depen.dence of sodium laser guide star photon return on the geo.magnetic field[J]. Astronomy&Astrophysics, 2009, 501(2): 793-799.

    [27] [27] Higbie J M, Rochester S M, Patton B, et al. Magnetometry with mesospheric sodium[J]. Proceedings of the National Academy of Sciences, 2011, 108(9): 3522-3525.

    [28] [28] Kane T J, Hillman P D, Denman C A, et al. Laser remote magnetometry using mesospheric sodium[J]. Journal of Geophysical Research: Space Physics, 2018, 123(8): 6171-6188.

    [29] [29] Bustos F P, Calia D B, Budker D, et al. Polarization-driven spin precession of mesospheric sodium atoms[J]. Optics Letters, 2018, 43(23): 5825-5828.

    [30] [30] Fan T, Zhou T, Feng Y. Improving sodium laser guide star brightness by polarization switching[J]. Scientific Reports, 2016, 6(1):1-6.

    [31] [31] Fan T, Yang X, Dong J, et al. Remote magnetometry with mesospheric sodium based on gated photon counting[J]. Journal of Geophysical Research: Space Physics, 2019, 124(9): 7505-7512.

    [32] [32] Bustos F P, Holzl.hner R, Rochester S, et al. Frequency chirped continuous-wave sodium laser guide stars[J]. arX. iv preprint arXiv: 2020, 2001, 02717.

    [33] [33] H.nsch T W, Schawlow A L. Cooling of gases by laser radi. ation[J]. Optics Communications, 1975, 13(1): 68-69.

    [34] [34] Bradley L C. Pulse-train excitation of sodium for use as a synthetic beacon[J]. JOSA B, 1992, 9(10): 1931-1944.

    [35] [35] Bustos F P, Holzl.hner R, Rochester S, et al. Frequency chirped continuous-wave sodium laser guide stars[J]. arX. iv preprint arXiv: 2020, 2001, 02717.

    [36] [36] Hackenberg W, Eckart A, Davies R I, et al. Near-infrared adaptive optics observations of galaxy clusters: Abell 262 at z= 0.0157, J1836. 3CR at z= 0.414, and PKS 0743-006 at z= 0.994[J]. arXiv preprint astro-ph/0005424, 2000.

    [37] [37] Perrin M D, Graham J R, Kalas P, et al. Laser guide star adaptive optics imaging polarimetry of Herbig Ae/Be stars[J]. Science, 2004, 303(5662): 1345-1348.

    [38] [38] Melbourne J, Wright S A, Barczys M, et al. Merging galax. ies in GOODS-S: first extragalactic results from Keck laser adaptive optics[J]. The Astrophysical Journal Letters, 2005, 625(1): L27.

    [39] [39] Barbosa C L, Blum R D, Conti P S, et al. High spatial reso.lution spectroscopy of W51 IRS 2E and IRS 2W: two verymassive young stars in early formation stages[J]. The Astro. physical Journal Letters, 2008, 678(1): L55.

    [40] [40] Genzel R, Burkert A, Bouché N, et al. From rings to bulg.es: evidence for rapid secular galaxy evolution at z~2 fromintegral field spectroscopy in the SINS survey[J]. The As. trophysical Journal, 2008, 687(1): 59.

    [41] [41] Bernat D, Bouchez A H, Ireland M, et al. A close compan.ion search around l dwarfs using aperture masking interfer.ometry and palomar laser guide star adaptive optics[J]. The Astrophysical Journal, 2010, 715(2): 724.

    [42] [42] Rusu C E, Oguri M, Inada N, et al. SDSS J133401. 39+ 331534.3: A new subarcsecond gravitationally lensed qua.sar[J]. The Astrophysical Journal, 2011, 738(1): 30.

    [43] [43] Wizinowich P. Progress in laser guide star adaptive opticsand lessons learned[C]//Adaptive Optics Systems III, Inter.national Society for Optics and Photonics, 2012, 8447: 84470D.

    [44] [44] Bennet F, D’Orgeville C, Gao Y, et al. Adaptive optics forspace debris tracking[C]//Adaptive Optics Systems IV, In.ternational Society for Optics and Photonics, 2014, 9148: 91481F.

    [45] [45] d′Orgeville C, Bennet F, Blundell M, et al. A sodium laser guide star facility for the ANU/EOS space debris tracking adaptive optics demonstrator[C]//Adaptive Optics Systems IV, International Society for Optics and Photonics, 2014, 9148: 91483E.

    [46] [46] Tolker-Nielsen T, Guillen J C. SILEX: the first European optical communication terminal in orbit[J]. ESA bulletin, 1998, 96(1): 998.

    [47] [47] Gütlich B, Meyer R, Phillip-May S, et al. German roadmapon optical communication in space[C]//Applications of La.sers for Sensing and Free Space Communications, OpticalSociety of America, 2013: LM1B, 2.

    [48] [48] Calvo R M, Becker P, Giggenbach D, et al. Transmitter di. versity verification on ARTEMIS geostationary satellite [C]//Free-Space Laser Communication and Atmospheric Propagation XXVI, International Society for Optics and Photonics, 2014, 8971: 897104.

    [49] [49] Moll F, Knapel M. Free-space laser communications for satellite downlinks: measurements of the atmospheric channel[J]. Proceedings of IAC 2011, 2011.

    [50] [50] Romba J, Sodnik Z, Reyes M, et al. ESA′s bidirectional space-to-ground laser communication experiments[C]// Free-Space Laser Communications IV, International Soci.ety for Optics and Photonics, 2004, 5550: 287-298.

    [51] [51] Mata-Calvo R, Calia D B, Barrios R, et al. Laser guide stars for optical free-space communications[C]//Free-Space La. ser Communication and Atmospheric Propagation XXIX, International Society for Optics and Photonics, 2017, 10096: 100960R.

    [52] [52] Tyler R H, Maus S, Lühr H. Satellite observations of mag. netic fields due to ocean tidal flow[J]. Science, 2003, 299(5604): 239-241.

    [53] [53] Thúbault E, Purucker M, Whaler K A, et al. The magnetic field of the Earth’s lithosphere[J]. Space Science Reviews, 2010, 155(1-4): 95-127.

    [54] [54] Johnsen M G, Matzka J, Hoppe U P. The mesospheric sodi. um layer as a remotely, optically pumped magnetometer for investigation of Birkeland currents[C]//EGU General Assembly Conference Abstracts, 2016: EPSC2016-5591.

    [55] [55] Witze A. Earth′s magnetic field is acting up and geologistsdon′t know why[J]. Nature, 2019, 565(7738): 143-145.

    [56] [56] Friis-Christensen E, Lühr H, Hulot G. Swarm: a constella. tion to study the Earth’s magnetic field[J]. Earth, Planets and Space, 2006, 58(4): 351-358.

    [57] [57] Slavin J A, Le G, Strangeway R J, et al. Space technology 5 multi-point measurements of near-Earth magnetic fields: initial results[J]. Geophysical Research Letters, 2008, 35(2).

    [58] [58] Purucker M, Sabaka T, Le G, et al. Magnetic field gradi. ents from the ST-5 constellation: improving magnetic and thermal models of the lithosphere[J]. Geophysical Re. search Letters, 2007, 34(24).

    [59] [59] Bustos F P, Calia D B, Budker D, et al. Remote sensing of geomagnetic fields and atomic collisions in the meso. sphere[J]. Nature Communications, 2018, 9(1):1-8.

    [60] [60] Bowman M R, Gibson A J, Sandford M C W. Atmospheric sodium measured by a tuned laser radar[J]. Nature, 1969, 221(5179): 456-457.

    [61] [61] Gibson A J, Thomas L, Bhattachacharyya S K. Laser obser. vations of the ground-state hyperfine structure of sodium and of temperatures in the upper atmosphere[J]. Nature, 1979, 281(5727): 131-132.

    [62] [62] Fricke K H, Von Zahn U. Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar[J]. Journal of Atmospheric and Ter. restrial Physics, 1985, 47(5): 499-512.

    [63] [63] Von Zahn U, Meyer W. Mesopause temperatures in polar summer[J]. Journal of Geophysical Research: Atmo. spheres, 1989, 94(D12): 14647-14651.

    [64] [64] Li T, Fang X, Liu W, et al. Narrowband sodium lidar for the measurements of mesopause region temperature and wind[J]. Applied Optics, 2012, 51(22): 5401-5411.

    [65] [65] Kawahara T D, Nozawa S, Saito N, et al. Sodium tempera. ture/wind lidar based on laser-diode-pumped Nd: YAG la. sers deployed at Troms., Norway(69.6° N, 19.2° E)[J]. Optics Express, 2017, 25(12): A491-A501.

    [66] [66] Enderlein M, Kaenders W G. Sodium Guide Star(R)Evo. lution: a novel sodium guide star laser enables next genera.tion adaptive optics for ground-based astronomy[J]. Op. tik&Photonik, 2016, 11(5): 31-35.

    [67] [67] Friedman H W, Avicola K, Bissinger H D, et al. Laser guide-star measurements at lawrence livermore national laboratory[C]//Active and Adaptive Optical Componentsand Systems II, International Society for Optics and Photo.nics, 1993, 1920: 52-60.

    [68] [68] Max C E, Gavel D T, Olivier S S, et al. Issues in the design and optimization of adaptive optics and laser guide stars for the Keck telescopes[C]//Adaptive Optics in Astronomy,International Society for Optics and Photonics, 1994, 2201: 189-200.

    [69] [69] Friedman H, Erbert G, Kuklo T. Sodium beacon laser sys. tem for the lick observatory[R]. Lawrence Livermore Na. tional Lab, CA(United States), 1995.

    [70] [70] Rabien S, Davies R I, Ott T, et al. ALFA laser guide star:present status and future developments[C]//Adaptive Opti.cal Systems Technology, International Society for Optics and Photonics, 2000, 4007: 50-56.

    [71] [71] Quirrenbach A, Hackenberg W K P, Holstenberg H C, et al. Sodium laser guide star system of ALFA[C]//Adaptive Optics and applications, International Society for Optics and Photonics, 1997, 3126: 35-43.

    [72] [72] Jeys T H, Brailove A A, Mooradian A. Sum frequency gen. eration of sodium resonance radiation[J]. Applied Optics, 1989, 28(13): 2588-2591.

    [73] [73] Bienfang J C, Denman C A, Grime B W, et al. 20W of con. tinuous-wave sodium D2 resonance radiation from sum-fre. quency generation with injection-locked lasers[J]. Optics Letters, 2003, 28(22): 2219-2221.

    [74] [74] Denman C A, Hillman P D, Moore G T, et al. Realization of a 50-watt facility-class sodium guidestar pump laser[C]//Solid State Lasers XIV: Technology and Devices. Interna. tional Society for Optics and Photonics, 2005, 5707: 46-49.

    [75] [75] Tracy A J, Hankla A K, Lopez C, et al. High-power solid-state sodium beacon laser guidestar for the Gemini North Observatory[C]//Advanced Solid-State Photonics, Optical Society of America, 2005: WA7.

    [76] [76] d′Orgeville C, Arriagada G, Bec M, et al. Gemini north la. ser guide star first light [C]//Advanced Maui Optical and Space Surveillance Technologies , 2005: 656-665.

    [77] [77] Lee I, Jalali M, Vanasse N, et al. 20 W and 50 W guide. star laser system update for the Keck I and Gemini south telescopes[C]//Adaptive Optics Systems, International So.ciety for Optics and Photonics, 2008, 7015: 70150N.

    [78] [78] d′Orgeville C, Diggs S, Fesquet V, et al. Gemini south multi-conjugate adaptive optics(GeMS)laser guide star facility on-sky performance results[C]//Adaptive Optics Systems III, International Society for Optics and Photon. ics, 2012, 8447: 84471Q.

    [79] [79] d′Orgeville C, Fetzer G J. Four generations of sodium guide star lasers for adaptive optics in astronomy and space situational awareness[C]//Adaptive Optics Systems V, International Society for Optics and Photonics, 2016, 9909: 99090R.

    [80] [80] Zuyan X, Yong B, Qinjun P, et al. Progress on sodium la. ser guide star[J]. Infrared and Laser Engineering, 2016, 45(1): 0101001.

    [81] [81] Xu Z, Xie S, Bo Y, et al. Investigation of 30W-class sec. ond-generation sodium beacon laser[J]. Acta Optica Sina. ca, 2011, 31: 0900111-1.

    [82] [82] Wei K, Bo Y, Xue X, et al. Photon returns test of the pulsed sodium guide star laser on the 1.8 meter telescope [C]//Adaptive Optics Systems III, International Society forOptics and Photonics,2012:84471R.

    [84] [84] Lu Y, Zhang L, Xu X, et al. 208 W all-solid-: state sodi. um guide star laser operated at modulated-longitudinal mode[J]. Optics Express, 2019, 27(15): 20282-20289.

    [85] [85] Pennington D M, Dawson J W, Drobshoff A, et al. Com. pact fiber laser approach to 589 nm laser guide stars[C]// Conference on Lasers and Electro-Optics, Optical Society of America, 2004: CFD1.

    [86] [86] Murray J T, Roberts Jr W T, Austin W L, et al. Fiber Ra. man laser for sodium guide star[C]//Adaptive Optical Sys.tem Technologies, International Society for Optics and Photonics, 1998, 3353: 330-339.

    [87] [87] Feng Y, Huang S, Shirakawa A, et al. 589 nm light source based on Raman fiber laser[J]. Japanese Journal of Ap. plied Physics, 2004, 43(6A): L722.

    [88] [88] Feng Y, Taylor L R, Calia D B. 25 W Raman-fiber-amplifi. er-based 589 nm laser for laser guide star[J]. Optics Ex. press, 2009, 17(21): 19021-19026.

    [89] [89] Taylor L R, Feng Y, Calia D B. 50W CW visible laser source at 589nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre am. plifiers[J]. Optics Express, 2010, 18(8): 8540-8555.

    [90] [90] Yang X, Zhang L, Cui S, et al. Sodium guide star laser pulsed at Larmor frequency[J]. Optics Letters, 2017, 42(21): 4351-4354.

    [91] [91] Johnson R L, Byrd M O, Wyman K, et al. Recent progress in sodium beacon development[J]. Adaptive Optics Sys. tems VII, 2020, 11448: 114486P.

    [92] [92] Calia D B, Feng Y, Hackenberg W, et al. Laser develop. ment for sodium laser guide stars at ESO[J]. The Messen. ger, 2010, 139: 12-19.

    [93] [93] D’Orgeville C, Bouchez A, Conan R, et al. GMT laser guide star facility[J]. Proc AO4ELT3, 2013.

    [94] [94] Close L M, Schreiber L, Schmidt D, et al. Adaptive optics program at TMT[M]. Adaptive Optics Systems VI, 2018.

    [95] [95] Kantola E, Leinonen T, Ranta S, et al. High-efficiency 20 W yellow VECSEL[J]. Optics Express, 2014, 22(6): 6372-6380.

    [96] [96] Leinonen T, Korpij.rvi V M, H.rk.nen A, et al. 7.4 W yel. low GaInNAs-based semiconductor disk laser[J]. Electron. ics Letters, 2011, 47(20): 1139-1140.

    [97] [97] Hastie J E, Calvez S, Dawson M D, et al. High power CW red VECSEL with linearly polarized TEM00 output beam[J]. Optics Express, 2005, 13(1): 77-81.

    [98] [98] Berger J D, Chilla J L A, Govorkov S, et al. Towards a practical sodium guide star laser source: design for> 50 watt LGS based on OPSL[C]//Adaptive Optics Systems III,International Society for Optics and Photonics, 2012, 8447: 84470G.

    [101] [101] Huo X, Qi Y, Zhang Y, et al. Research development of 589 nm laser for sodium laser guide stars[J]. Optics and Lasers in Engineering, 2020, 134: 106207.

    [102] [102] Duering M, Kolev V, Luth er-Davies B. Mu ltistage optical parame tric amplifier for the generation of so dium guide star[C]//Nonlinear Frequency Generation and Conversion: Materials, Devices, and App lication s VIII, International Society for Optics and Photonics, 2009, 7197: 71970X.

    [103] [103] Friel I, Geoghegan S L, Twitchen D J, et al. Development of high quality single crystal diamond for novel laser appli- cations[C]//Optics and Photonics for Counterterrorism and Crime Fighting VI and Opti cal Materials in Defence Sys- terns Technology VII, International Society for Optics and Photonics, 2010, 7838: 783819.

    [104] [104] Lawa ndy N, Afzal R. Solid state diamond Raman laser: U. S. Patent Application 10/97 1, 66l[P]. 2005-7-28.

    [105] [105] Granados E, Spence DJ, Mildren RP. Deep ultraviolet di- amond Raman laser[J]. Optics Express, 2011, 19 (11): 10857-10863.

    [106] [106] Jasbeer H, Williams R J, Kitzler 0, et al. Wavelength di- ve rsification of high-power external cavity diamond Ra- man lasers using intracavity harmonic generation[J]. Op- tics Express, 2018, 26(2 ): 1930-1941.

    [107] [107] Sabella A, Piper J A, Mildren R P. 1 240 nm diamond Ra-man laser operating near the quantum limit[J]. Optics Let- ters, 2010, 35(23): 3874-3876.

    [108] [108] Sabella A, Piper J A, Mildren R P. Mid-infrared diamond Raman laser with tuneable output[C]//Solid State Lasers XXIII: Technology and Devices, International Society for Optics and Photonics, 2014, 8959: 89590B.

    [109] [109] Williams R J, Nold J, Strecker M, et al. Efficient Raman frequency conversion of high-power fiber lasers in dia- mond[J]. Laser&Photonics Reviews, 2015, 9(4): 405-411.

    [110] [110] Murtagh M, Lin J, Mildren R P, et al. Efficient diamond Raman laser generating 65 fs pulses[]]. Optics Express, 2015, 23(12): 15504-15513.

    [111] [111] Kitzler 0, Lin J, Pask H M, et al. Single-longitudi- nal-mode ring diamond Raman laser[J]. Optics Letters, 2017, 42(7): 1229-1232.

    [112] [112] Yang X, Kitzler 0, Spence D J, et al. Diamond sodium guide star laser[J]. Optics Letters, 2020, 45(7): 1898-1901.

    CLP Journals

    [1] ZHOU Yu, HE Wei. Target recognition method of laser imaging fuze[J]. Laser Technology, 2023, 47(2): 267

    Tools

    Get Citation

    Copy Citation Text

    YOU Wei, YANG Xue-zong, CHEN Wei-biao, FENG Yan. Review of 589 nm Sodium Laser Guide Stars (Invited)[J]. Electro-Optic Technology Application, 2021, 36(5): 1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 11, 2021

    Accepted: --

    Published Online: Dec. 1, 2021

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics