Journal of Advanced Dielectrics, Volume. 14, Issue 4, 2340009(2024)
Preparation and microwave absorption properties of flexible composites containing Ag decorated polystyrene powders
[1] C. Ji et al. Facile preparation and excellent microwave absorption properties of cobalt-iron/porous carbon composite materials. J. Magn. Magn. Mater., 527, 167776(2021).
[2] Y. Liu et al. Facile synthesis and electromagnetic wave absorption properties of silver coated porous carbon composite materials. J. Alloys Compd., 856, 158194(2021).
[3] H. Lv et al. Electromagnetic absorption materials: Current progress and new frontiers. Prog. Mater. Sci., 127, 100946(2022).
[4] C. G. Jayalakshmi et al. Polymer matrix composites as broadband radar absorbing structures for stealth aircrafts. J. Appl. Polym. Sci., 136, 47241(2019).
[5] T. Chen et al. Flexible electromagnetic wave absorption material: Multiscale synergistic approach to achieve whole X-band absorption and thermal stealth property. Carbon, 210, 118048(2023).
[6] B. Quan et al. A rational design of multiple-layer films with continuous impedance gradient variation for enhanced microwave absorption. J. Mater. Chem. A, 11, 3625(2023).
[7] P. Zhu, B. Liu, L. Bao. Evaporation-induced surface coating of poly (p-phenylene benzobisoxazole) fibers with polyetherimide encapsulated nano-TiO2. Prog. Org. Coat., 116, 43(2018).
[8] J. Liu, L. Zhang, H. Wu. Electromagnetic wave-absorbing performance of carbons, carbides, oxides, ferrites and sulfides: review and perspective. J. Phys. D: Appl. Phys., 54, 203001(2021).
[9] S. P. Pawar et al. High frequency millimetre wave absorbers derived from polymeric nanocomposites. Polymer, 84, 398(2016).
[10] J. Lu et al. Review of dielectric carbide, oxide, and sulfide nanostructures for electromagnetic wave absorption. ACS Appl. Nano Mater., 6, 15347(2023).
[11] X. Yang et al. Interface modulation of chiral PPy/Fe3O4 planar microhelixes to achieve electric/magnetic-coupling and wide-band microwave absorption. Chem. Eng. J., 430, 132747(2022).
[12] I. Abdalla et al. Co3O4/carbon composite nanofibrous membrane enabled high-efficiency electromagnetic wave absorption. Sci. Rep., 8, 12402(2018).
[13] R. Wang et al. Preparation and electromagnetic-wave-absorption properties of a nitrogen-doped carbon–supported iron (II, III) oxide composite. J. Mater. Sci.: Mater. Electron., 33, 1383(2022).
[14] J. S. Oh et al. In situ fabrication of platinum/graphene composite shell on polymer microspheres through reactive self-assembly and in situ reduction. J. Mater. Sci., 48, 1127(2013).
[15] S. Gao, Y. Zhang, X. Zhang, F. Jiao, T. Liu, H. Li, Y. Bai, C. Wu. Synthesis of hollow ZnFe2O4/residual carbon from coal gasification fine slag composites for multiband electromagnetic wave absorption. J. Alloys Compd., 952, 170016(2023).
[16] D. Sarma et al. Multifunctional polystyrene core/silica shell microparticles with antifouling properties for bead-based multiplexed and quantitative analysis. ACS Appl. Mater. Interfaces, 11, 1321(2018).
[17] D. Tongtong et al. Preparation of silver pastes with high electrical conductivity after folding. Rare Met. Mater. Eng., 51, 772(2022).
[18] J. Zhang et al. A novel method to synthesize polystyrene nanospheres immobilized with silver nanoparticles by using compressed CO2. Chem. Eur. J., 10, 3531(2004).
[19] H. Yang et al. Mesoporous silica microcapsule-supported Ag nanoparticles fabricated via nano-assembly and its antibacterial properties. J. Mater. Chem., 22, 24132(2012).
[20] Y. Wang et al. Facile preparation of graphite particles fully coated with thin Ag shell layers for high performance conducting and electromagnetic shielding composite materials. J. Mater. Chem. C, 4, 2566(2016).
[21] C. Junfan, L. Tao, Z. Jie. Raman enhancement properties of a high uniformity PS microsphere-Ag nanoparticle substrate. Opt. Mater. Express, 10, 3215(2020).
[22] S. K. Cushing et al. Origin of localized surface plasmon resonances in thin silver film over nanosphere patterns. Appl. Phys. A, 103, 955(2011).
[23] M. Kim et al. Accordion-like plasmonic silver nanorod array exhibiting multiple electromagnetic responses. NPG Asia Mater., 10, 190(2018).
[24] B. Mir-Simon et al. SERS efficiencies of micrometric polystyrene beads coated with gold and silver nanoparticles: the effect of nanoparticle size. J. Opt., 17, 114012(2015).
[25] M. Ma et al. Bioinspired PM2. 5 filter: An AgNWs reinforced PAN/PVP composite membrane with the porous and multilayered network structure. Appl. Surf. Sci., 644, 158814(2024).
[26] J. Yuan et al. Printable and stretchable conductive elastomers for monitoring dynamic strain with high fidelity. Adv. Funct. Mater., 32, 2204878(2022).
[27] Z. Pan et al. Durable microstructured surfaces: combining electrical conductivity with superoleophobicity. ACS Appl. Mater. Interfaces, 8, 1795(2016).
[28] T. C. Chang, Y. K. Kwan, Y. K. Fuh. A reduced percolation threshold of hybrid fillers of ball-milled exfoliated graphite nanoplatelets and AgNWs for enhanced thermal interface materials in high power electronics. Compos. B: Eng., 191, 107954(2020).
[29] Y. C. Qing, W. C. Zhou, F. Luo, D. M. Zhu. Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceram. Int., 42, 16412(2016).
[30] Y. C. Qing, Y. Li, W. Li, H. Y. Yao. Ti3+ self-doped dark TiO2 nanoparticles with tunable and unique dielectric properties for electromagnetic applications. J. Mater. Chem. C, 9, 1205(2021).
[31] Y. Liu, R. Li, W. Wang, Y. C. Qing. Magnetic properties and microwave absorption of Ni0.7Zn0.3A0.05Fe1.95O4 (A = La, Ce, and Nd) powders within the range of 2–18 GHz. Ceram. Int., 47, 28764(2021).
[32] Y. Liu, J. Qin, L. Lu, J. Xu, X. Su. Enhanced microwave absorption property of silver decorated biomass ordered porous carbon composite materials with frequency selective surface incorporation. Int. J. Miner. Metall. Mater., 30, 525(2023).
[33] Y. Liu, C. Ji, X. Su, J. Xu, X. He. Electromagnetic and microwave absorption properties of Ti3SiC2 powders decorated with Ag particles. J. Alloys Compd., 820, 153154(2020).
[34] V Ciancio, F. Farsaci, P. Rogolino. On a thermodynamical model for dielectric relaxation phenomena. Phys. B: Condens. Matter, 405, 175(2010).
[35] S. Gao, Y. Zhang, J. He, X. Zhang, F. Jiao, T. Liu, H. Li, C. Wu, M. Ma. Coal gasification fine slag residual carbon decorated with hollow-spherical Fe3O4 nanoparticles for microwave absorption. Ceram. Int., 49, 17554(2023).
[36] C. Ji, Y. Liu, J. Xu, Y. Li, Y. Shang, X. Su. Enhanced microwave absorption properties of biomass-derived carbon decorated with transition metal alloy at improved graphitization degree. J. Alloys Compd., 890, 161834(2022).
[37] X. Liu et al. Nanocellulose-polysilazane single-source-precursor derived defect-rich carbon nanofibers/SiCN nanocomposites with excellent electromagnetic absorption performance. Carbon, 188, 349(2022).
[38] Y. Li et al. A temperature-responsive composite for adaptive microwave absorption. Chem. Eng. J., 427, 131746(2022).
[39] H. Wei, X. Yin, X. Li, M. Li, X. Dang, L. Zhang, L. Cheng. Controllable synthesis of defective carbon nanotubes/Sc2Si2O7 ceramic with adjustable dielectric properties for broadband high-performance microwave absorption. Carbon, 147, 276(2019).
[40] Y. Li et al. Controllable modification of helical carbon nanotubes for high-performance microwave absorption. Nanotechnol. Rev., 10, 671(2021).
Get Citation
Copy Citation Text
Jianhao Ma, Yi Liu, Jingnan Qin, Qiang Wang, Xiaolei Su. Preparation and microwave absorption properties of flexible composites containing Ag decorated polystyrene powders[J]. Journal of Advanced Dielectrics, 2024, 14(4): 2340009
Category: Research Articles
Received: Oct. 18, 2023
Accepted: Dec. 12, 2023
Published Online: Nov. 5, 2024
The Author Email: Liu Yi (yiliu1021@163.com), Su Xiaolei (suxiaolei@xpu.edu.cn)