Acta Optica Sinica, Volume. 38, Issue 9, 0910001(2018)

Supervised Sparsity Preserving Projection Based on Global Constraint

Ying Tong1,2、*, Yimin Wei1, and Yuehong Shen1、*
Author Affiliations
  • 1 College of Communication Engineering, The Army Engineering University of PLA, Nanjing, Jiangsu 210007, China
  • 2 Department of Communication Engineering, Nanjing Institute of Technology, Nanjing, Jiangsu 211167, China
  • show less
    Figures & Tables(14)
    Sparsity reconstruction weights distribution of 50 samples by SPP algorithm on LFW database
    Sparsity reconstruction weights distribution of 50 samples by SSPP-GC algorithm on LFW database (a) with compactness constraint and (b) without compactness constraint
    2D visualizations on Extended Yale B database. (a) 2D visualizations of SPP; (b) 2D visualizations of SSPP-GC
    Partial sample images on four databases. (a) Partial samples of AR database; (b) partial samples of Extended Yale B database; (c) partial samples of LFW database; (d) partial samples of PubFig database
    Comparison of sub-space recognition results of different algorithms in different dimensions. (a) AR database; (b) Extended Yale B database
    Samples of an individual from Extended Yale B database. (a) Add noise images; (b) add occlusion images
    Recognition rates of di?erent PSNR on Extended Yale B database
    • Table 1. Performance comparisons of different algorithms and their corresponding optimal dimensions on four databases

      View table

      Table 1. Performance comparisons of different algorithms and their corresponding optimal dimensions on four databases

      AlgorithmOptimal recognition rateSub-space dimension
      ARExtendedYale BLFWPubFigARExtendedYale BLFWPubFig
      PCA85.4391.6035.7932.12213170322290
      LDA89.1492.4455.8926.1699376198
      LPP89.5794.0756.3025.769111565108
      NPE90.1495.5955.1025.05191151181271
      LSDA90.5792.6856.3027.27213151151251
      SPP91.0092.6241.4530.51213151322281
      SSPP-GC93.8695.0462.0136.1618510159245
    • Table 2. Performance comparisons of different algorithms and their corresponding optimal dimensions on the AR and Extended Yale B databases

      View table

      Table 2. Performance comparisons of different algorithms and their corresponding optimal dimensions on the AR and Extended Yale B databases

      AlgorithmOptimalrecognition rateSub-space dimension
      ARExtendedYale BARExtendedYale B
      DSNPE[26]91.4394.62150140
      SSPP-GC93.8695.04185101
      WDSPE[27]82.5087.89180200
      SSPP-GC91.7189.2812080
      GRSDA[28]93.893.4130361
      SSPP-GC98.0098.1960110
    • Table 3. Performance comparison of different algorithms on the LFW and PubFig databases

      View table

      Table 3. Performance comparison of different algorithms on the LFW and PubFig databases

      DatabaseMethod
      DSNPE[26]SVDL[38]FDDL[19]SSPP-GC
      LFW56.2657.4760.8462.01
      PubFig35.3537.4527.2736.16
    • Table 4. Sparse reconstruction time and low dimensional projection time of SSPP-GC and SPP on four databasess

      View table

      Table 4. Sparse reconstruction time and low dimensional projection time of SSPP-GC and SPP on four databasess

      TimeARExtended Yale BLFWPubFig
      SPPSSPP-GCSPPSSPP-GCSPPSSPP-GCSPPSSPP-GC
      tC3628.2125.594455.1279.452810.2344.2310628.2763.74
      tP0.210.350.480.240.330.510.690.56
    • Table 5. Recognition rates of different algorithms with different classifiers on the LFW database%

      View table

      Table 5. Recognition rates of different algorithms with different classifiers on the LFW database%

      ClassifierMethod
      PCALDALPPNPELSDASPPSSPP-GC
      KNN15.0238.4539.7032.6723.5533.5062.80
      SVM16.2748.1549.2357.0153.2754.1462.01
      SRC35.7955.8956.3055.1056.3041.4562.01
    • Table 6. Recognition rates of different algorithms with different classifiers on the PubFig database%

      View table

      Table 6. Recognition rates of different algorithms with different classifiers on the PubFig database%

      ClassifierMethod
      PCALDALPPNPELSDASPPSSPP-GC
      KNN14.9512.5311.626.065.9627.0733.23
      SVM12.5318.2819.1921.1122.2231.8239.09
      SRC32.1226.1625.7625.0527.2730.5136.16
    • Table 7. Comparison of recognition rates of di?erent occlusions on Extended Yale B database

      View table

      Table 7. Comparison of recognition rates of di?erent occlusions on Extended Yale B database

      AlgorithmRecognition rates /%Optimal projection dimension
      2 pixel×2 pixel4 pixel×4 pixel8 pixel×8 pixel16 pixel×16 pixel2 pixel×2 pixel4 pixel×4 pixel8 pixel×8 pixel16 pixel×16 pixel
      PCA90.4890.4889.9887.65159159158142
      LDA91.2591.1490.2088.0437373737
      LPP92.5892.5892.3689.2010110110199
      NPE94.6894.4694.2491.9215914914132
      LSDA91.9791.9791.0388.59159159158142
      SPP92.9792.9192.3690.20149159158142
      SSPP-GC95.0495.0294.1392.911011018181
    Tools

    Get Citation

    Copy Citation Text

    Ying Tong, Yimin Wei, Yuehong Shen. Supervised Sparsity Preserving Projection Based on Global Constraint[J]. Acta Optica Sinica, 2018, 38(9): 0910001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jan. 8, 2018

    Accepted: Apr. 16, 2018

    Published Online: May. 9, 2019

    The Author Email:

    DOI:10.3788/AOS201838.0910001

    Topics