The Journal of Light Scattering, Volume. 35, Issue 4, 369(2023)
Structure and Typical Applications of Fiber-optic SERS Sensors
[2] [2] J Lu, Q Xue, H Bai, et al. Design of a confocal micro-Raman spectroscopy system and research on microplastics detection[J]. Applied optics, 2021, 60(27): 8375-8383.
[3] [3] M Fleischmann, P J Hendra, A J McQuillan. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical physics letters, 1974, 26(2): 163-166.
[4] [4] C Li, Y Huang, X Li, et al. Towards practical and sustainable SERS: a review of recent developments in the construction of multifunctional enhancing substrates[J]. Journal of Materials Chemistry C, 2021, 9(35): 11517-11552.
[5] [5] Q Fu, H L Liu, Z Wu, et al. Rough surface Au@ Ag core–shell nanoparticles to fabricating high sensitivity SERS immunochromatographic sensors[J]. Journal of Nanobiotechnology, 2015, 13: 1-9.
[6] [6] J Fei, L Wu, Y Zhang, et al. Pharmacokinetics-on-a-chip using label-free SERS technique for programmable dual-drug analysis[J]. Acs Sensors, 2017, 2(6): 773-780.
[10] [10] R Min, Z Liu, L Pereira, et al. Optical fiber sensing for marine environment and marine structural health monitoring: A review[J]. Optics & Laser Technology, 2021, 140: 107082.
[12] [12] Q Wang, L Wang. Lab-on-fiber: plasmonic nano-arrays for sensing[J]. Nanoscale, 2020, 12(14): 7485-7499.
[14] [14] G F Andrade, M Fan, A G Brolo. Multilayer silver nanoparticles-modified optical fiber tip for high performance SERS remote sensing[J]. Biosensors and Bioelectronics, 2010, 25(10): 2270-2275.
[15] [15] Y Zhu, R A Dluhy, Y. Zhao. Development of silver nanorod array based fiber optic probes for SERS detection[J]. Sensors and Actuators B: Chemical, 2011, 157(1): 42-50.
[16] [16] Z Yin, X Li, Y Geng, et al. Improved laser-induced deposition of silver nanoparticles on fiber end for surface-enhanced Raman scattering[C]. 2016 15th International Conference on Optical Communications and Networks (ICOCN), IEEE, 2016, 1-3.
[17] [17] D Alexandre. Miniature optical fiber sensors using surface enhanced Raman spectroscopy (SERS) for remote biochemical sensing[J]. Journal of Biomedical Photonics & Engineering, 2019, 5(1): 10301.
[18] [18] C Credi, O Bibikova, C Dallari, et al. Fiber-cap biosensors for SERS analysis of liquid samples[J]. Journal of Materials Chemistry B, 2020, 8(8): 1629-1639.
[19] [19] A Kohut, V Horváth, Z Pápa, et al. One-step fabrication of fiber optic SERS sensors via spark ablation[J]. Nanotechnology, 2021, 32(39): 395501.
[20] [20] Y Long, H Li, Z Du, et al. Confined Gaussian-distributed electromagnetic field of tin (II) chloride-sensitized surface-enhanced Raman scattering (SERS) optical fiber probe: From localized surface plasmon resonance (LSPR) to waveguide propagation[J]. Journal of Colloid and Interface Science, 2021, 581: 698-708.
[21] [21] B Wang, Y Liu, C Ai, et al. Highly sensitive SERS detection in a non-volatile liquid-phase system with nanocluster-patterned optical fiber SERS probes[J]. Optics express, 2022, 30(10): 15846-15857.
[22] [22] C Pan, S Zhang, X Xiong, et al. Dynamically monitoring pH in living organisms based on a SERS-active optical fiber[J]. Advanced Materials Interfaces, 2022, 9(22): 2200328.
[23] [23] A Pesapane, A Lucotti, G Zerbi. Fiber-optic SERS sensor with optimized geometry: testing and optimization[J]. Journal of Raman Spectroscopy, 2010, 41(3): 256-267.
[24] [24] J Zhang, S M Chen, T C Gong, et al. Tapered fiber probe modified by Ag nanoparticles for SERS detection[J]. Plasmonics, 2016,11(3): 743-751.
[25] [25] Y M Morozov, A S Lapchuk, A V Prygun, et al. Investigation of optical fiber-tip probes for common and ultrafast SERS[J]. New Journal of Physics, 2020, 22(3): 033027.
[26] [26] T Li, Z N Yu, Z K Wang, et al. Optimized tapered fiber decorated by Ag nanoparticles for Raman measurement with high sensitivity[J]. Sensors, 2021, 21, 2300.
[27] [27] Z N Yu, Z K Wang, J Zhang, Preparation optimization for a silver cavity coupled tapered fiber SERS probe with high sensitivity[J]. Optical Materials Express, 2022,12(7):459758.
[28] [28] Z K Wang,Z N Yu, N Wang, et al. Raman enhancement mechanism and experiments of cavity-enhanced AgNP decorated tapered fiber sensor[J]. Optics Letters, 2021, 46(17):4300-4303.
[29] [29] M Yu, Q Tian, G He, et al. Surface-enhanced Raman scattering fiber probe based on silver nanocubes[J]. Advanced Fiber Materials, 2021, 3: 349-358.
[30] [30] M Pisco, F Galeotti, G Quero, et al. Nanosphere lithography for advanced all fiber Sers probes[C]. Sixth European Workshop on Optical Fibre Sensors, SPIE, 2016, 9916: 250-253.
[31] [31] L Sansone, S Campopiano, M Pannico, et al. Photonic bandgap influence on the SERS effect in metal-dielectric colloidal crystals optical fiber probe[J]. Sensors and Actuators B: Chemical, 2021, 345: 130149.
[32] [32] C Liu, S Wang, G Chen, et al. A surface-enhanced Raman scattering (SERS)-active optical fiber sensor based on a three-dimensional sensing layer[J]. Sensing and Bio-Sensing Research, 2014, 1: 8-14.
[35] [35] Y Liu, J Guang, C Liu, et al. Simple and low-cost plasmonic fiber-optic probe as SERS and biosensing platform[J]. Advanced Optical Materials, 2019, 7(19): 1900337.
[36] [36] Y Mu, X Zhang. A paper-fiber-supported 3D SERS substrate[J]. Plasmonics, 2020, 15(3): 889-896.
[37] [37] F Beffara, J Perumal, A Puteri Mahyuddin, et al. Development of highly reliable SERS-active photonic crystal fiber probe and its application in the detection of ovarian cancer biomarker in cyst fluid[J]. Journal of Biophotonics, 2020, 13(3): e201960120.
[38] [38] Z Yin, Y Geng, Q Xie, et al. Photoreduced silver nanoparticles grown on femtosecond laser ablated, D-shaped fiber probe for surface-enhanced Raman scattering[J]. Applied optics, 2016, 55(20): 5408-5412.
[39] [39] B Man, G Wang, Z Li, et al. MoS2-spaced bimetal composite structure as SERS-SPR sensor for glucose detection[J]. Journal of Alloys and Compounds, 2022, 902: 163789.
[40] [40] B Huang, K Yang, Y Zhu, et al. Microfluidic integrated D-shaped optical fiber SERS probe with high sensitivity and ability of multi-molecule detection[J], Optical Express, 2023, 31(17): 27304-27311.
[41] [41] C Christopher, A Subrahmanyam, V Sai. Gold sputtered U-bent plastic optical fiber probes as SPR-and LSPR-based compact plasmonic sensors[J]. Plasmonics, 2018, 13: 493-502.
[42] [42] Z Yin, Y Geng, X Li, et al. Sensitivity-enhanced U-shaped fiber SERS probe with photoreduced silver nanoparticles[J]. IEEE Photonics Journal, 2016, 8(3): 1-7.
[43] [43] C G Danny, A Subrahmanyam, V Sai. Development of plasmonic U-bent plastic optical fiber probes for surface enhanced Raman scattering based biosensing[J]. Journal of Raman Spectroscopy, 2018, 49(10): 1607-1616.
[44] [44] H Manoharan, D KC, V Sai. Controlled in situ seed-mediated growth of gold and silver nanoparticles on an optical fiber platform for plasmonic sensing applications[J]. Plasmonics, 2020, 15: 51-60.
[45] [45] H Bai, Z Chen, N Chen, et al. A biconical taper multi-mode fiber SERS sensor[C].Asia Communications and Photonics Conference and Exhibition, Optica Publishing Group, 2010, 799004.
[47] [47] M Konstantaki, P Childs, M Sozzi, et al. Relief Bragg reflectors inscribed on the capillary walls of solid-core photonic crystal fibers[J]. Laser & Photonics Reviews, 2013, 7(3): 439-443.
[48] [48] Q Liu, J Guo, W Ye, et al. Development of an easy-to-operate underwater Raman system for deep-sea cold seep and hydrothermal vent in situ detection[J]. Sensors, 2021, 21(15): 5090.
[49] [49] X R Guo, D X Yang. Propagating light with the full cladding of hollow-core photonic crystal fiber[J]. Journal of Applied Optics, 2011, 32(4): 744-748.
[50] [50] H Ding, D J J Hu, X Yu, et al. Review on all-fiber online Raman sensor with hollow core microstructured optical fiber[J]. Photonics, 2022, 9(3): 134.
[51] [51] D Yan, J Popp, M W Pletz, et al. Highly sensitive broadband Raman sensing of antibiotics in step-index hollow-core photonic crystal fibers[J]. Acs Photonics, 2017, 4(1): 138-145.
[52] [52] Y Han, S Tan, M K K Oo, et al. Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers[J]. Advanced Materials, 2010, 22(24): 2647-2651.
[53] [53] S Hanf, T Bgozi, R. Keiner, et al. Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath[J]. Analytical chemistry, 2015, 87(2): 982-988.
[55] [55] X T Yu, C X Li, D J J Hu, et al. All-fiber online Raman sensor with enhancement via a Fabry–Perot cavity[J]. Optics letters, 2020, 45(20): 5760-5763.
[56] [56] Q Chu, Z Jin, X Yu, et al. Volumetric enhancement of Raman scattering for fast detection based on a silver-lined hollow-core fiber[J]. Optics express, 2019, 27(7): 10370-10382.
[57] [57] Y Lin, Y Zou, R G Lindquist. A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing[J]. Biomedical optics express, 2011, 2(3): 478-484.
[58] [58] S Feng, S Darmawi, T Henning, et al. A miniaturized sensor consisting of concentric metallic nanorings on the end facet of an optical fiber[J]. Small, 2012, 8(12): 1937-1944.
[59] [59] L Collard, F Pisano, D Zheng, et al. Holographic manipulation of nanostructured fiber optics enables spatially-resolved, reconfigurable optical control of plasmonic local field enhancement and SERS[J]. Small, 2022, 18(23): 2200975.
[60] [60] M Pisco, F Galeotti, G Quero, et al. Nanosphere lithography for optical fiber tip nanoprobes[J]. Light: Science & Applications, 2017, 6(5): e16229-e16229.
[61] [61] X Lan, Y Han, T Wei, et al. Surface-enhanced Raman-scattering fiber probe fabricated by femtosecond laser[J]. Optics letters, 2009, 34(15): 2285-2287.
[62] [62] X Ma, H Huo, W Wang, et al. Surface-enhanced Raman scattering sensor on an optical fiber probe fabricated with a femtosecond laser[J]. Sensors, 2010, 10(12): 11064-11071.
[63] [63] X Lan, J Huang, Q Han, et al. Fs laser fabricated D-shaped fiber for surface enhanced Raman scattering substrate[C]. Fiber Laser Applications, Optica Publishing Group, 2012, JTh2A. 17.
[64] [64] S Scheerlinck, P Dubruel, P Bienstman, et al. Metal grating patterning on fiber facets by UV-based nano imprint and transfer lithography using optical alignment[J]. Journal of Lightwave Technology, 2009, 27(10): 1415-1420.
[65] [65] G Kostovski, U Chinnasamy,S Jayawardhana, et al. Sub-15nm optical fiber nanoimprint lithography: a parallel, self-aligned and portable approach[J]. Advanced Materials, 2011, 23(4): 531-535.
[66] [66] S Tibuleac, D Wawro, R Magnusson. Resonant diffractive structures integrating waveguide-gratings on optical fiber endfaces[C]. IEEE Lasers and Electro-Optics Society 1999 Annual Meeting, IEEE, 1999, 2: 874-875.
[67] [67] X Yang, N Ileri, C C Larson, et al. Nanopillar array on a fiber facet for highly sensitive surface-enhanced Raman scattering[J]. Optics express, 2012, 20(22): 24819-24826.
[68] [68] L E G Armas, J W Menezes, M Huila, et al. Gold nanohole arrays fabricated by interference lithography technique as SERS probes for chemical species such as Rhodamine 6G and 4, 4’-Bipyridine[J]. Plasmonics, 2017, 12: 1015-1020.
[69] [69] Z Xie, S Feng, P Wang, et al. Demonstration of a 3D radar-like SERS sensor micro-and nanofabricated on an optical fiber[J]. Advanced Optical Materials, 2015, 3(9): 1232-1239.
[70] [70] J A Kim, D J Wales, A J Thompson, et al. Fiber-optic SERS probes fabricated using two-photon polymerization for rapid detection of bacteria[J]. Advanced Optical Materials, 2020, 8(9): 1901934.
[71] [71] D J Lipomi, R V Martinez, M A Kats, et al. Patterning the tips of optical fibers with metallic nanostructures using nanoskiving[J]. Nano letters, 2011, 11(2): 632-636.
[72] [72] Y Wang, F Liu, X Zhang. Flexible transfer of plasmonic photonic structures onto fiber tips for sensor applications in liquids[J]. Nanoscale, 2018, 10(34): 16193-16200.
[73] [73] Y Qin, R Huang, F Lu, et al. Effects of the cone angle on the SERS detection sensitivity of tapered fiber probes[J]. Optics express, 2022, 30(21): 37507-37518.
[74] [74] Q Fan, J Cao, Y Liu, et al. Investigations of the fabrication and the surface-enhanced Raman scattering detection applications for tapered fiber probes prepared with the laser-induced chemical deposition method[J]. Applied optics, 2013, 52(25): 6163-6169.
[75] [75] F Zhou, Y Liu, H Wang, et al. Au-nanorod-clusters patterned optical fiber SERS probes fabricated by laser-induced evaporation self-assembly method[J]. Optics express, 2020, 28(5): 6648-6662.
[76] [76] Y Liu, F Zhou, H Wang, et al. Micro-coffee-ring-patterned fiber SERS probes and their in situ detection application in complex liquid environments[J]. Sensors and Actuators B: Chemical, 2019, 299: 126990.
[77] [77] T Vo-Dinh, H N Wang, J Scaffidi. Plasmonic nanoprobes for SERS biosensing and bioimaging[J]. Journal of Biophotonics, 2010, 3(1-2): 89-102.
[78] [78] X Li, Y Zhang, B Xue, et al. A SERS nano-tag-based fiber-optic strategy for in situ immunoassay in unprocessed whole blood[J]. Biosensors and Bioelectronics, 2017, 92: 517-522.
[79] [79] D Gao, X Yang, P Teng, et al. On-line SERS detection of adenine in DNA based on the optofluidic in-fiber integrated GO/PDDA/Ag NPs[J]. Sensors and Actuators B: Chemical, 2021, 332: 129517.
[80] [80] Y Zhang, H Wu, H Wang, et al. Ultraminiature optical fiber-tip directly-printed plasmonic biosensors for label-free biodetection[J]. Biosensors and Bioelectronics, 2022, 218: 114761.
[81] [81] T Frosch, D Yan, J Popp. Ultrasensitive fiber enhanced UV resonance Raman sensing of drugs[J]. Analytical chemistry, 2013, 85(13): 6264-6271.
[82] [82] S Liu, J Huang, Z Chen, et al. Raman spectroscopy measurement of levofloxacin lactate in blood using an optical fiber nano-probe[J]. Journal of Raman Spectroscopy, 2015, 46(2): 197-201.
[83] [83] S Wolf, T Frosch, J Popp, et al. Highly sensitive detection of the antibiotic ciprofloxacin by means of fiber enhanced raman spectroscopy[J]. Molecules, 2019, 24(24): 4512.
[84] [84] X Yang, A S Chang, B Chen, et al. High sensitivity gas sensing by Raman spectroscopy in photonic crystal fiber[J]. Sensors and Actuators B: Chemical, 2013, 176: 64-68.
[85] [85] F Cheng, H Xu, C Wang, et al. Surface enhanced Raman scattering fiber optic sensor as an ion selective optrode: the example of Cd2+ detection[J]. RSC advances, 2014, 4(110): 64683-64687.
[87] [87] S S Dasary, A K Singh, D Senapati, et al. Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene[J]. Journal of the American Chemical Society, 2009, 131(38): 13806-13812.
[88] [88] Y Ran, P Strobbia, V Cupil-Garcia, et al. Fiber-optrode SERS probes using plasmonic silver-coated gold nanostars[J]. Sensors and Actuators B: Chemical, 2019, 287: 95-101.
[89] [89] X Yan, W Zhu, Y Wang, et al. “Coffee ring” fabrication and its application in aflatoxin detection based on SERS[J]. Chemosensors, 2022, 11(1): 22.
Get Citation
Copy Citation Text
HUANG Bo, WANG Zhengkun, ZHANG Jie. Structure and Typical Applications of Fiber-optic SERS Sensors[J]. The Journal of Light Scattering, 2023, 35(4): 369
Received: Apr. 16, 2023
Accepted: --
Published Online: Jul. 23, 2024
The Author Email: