Chinese Journal of Lasers, Volume. 50, Issue 15, 1507106(2023)

A Reconstruction Algorithm for Cherenkov‑Excited Luminescence Scanning Imaging Based on Unrolled Iterative Optimization

Mengfan Geng1,2, Hu Zhang1,2, Zhe Li1,2、**, Ting Hu1,2, Kebin Jia1,2, Zhonghua Sun1,2, and Jinchao Feng1,2、*
Author Affiliations
  • 1Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
  • 2Beijing Laboratory of Advanced Information Networks, Beijing 100124, China
  • show less
    References(23)

    [1] Pogue B W, Feng J C, LaRochelle E P et al. Maps of in vivo oxygen pressure with submillimetre resolution and nanomolar sensitivity enabled by Cherenkov-excited luminescence scanned imaging[J]. Nature Biomedical Engineering, 2, 254-264(2018).

    [2] Zhang R X, D'souza A V, Gunn J R et al. Cherenkov-excited luminescence scanned imaging[J]. Optics Letters, 40, 827-830(2015).

    [3] Jia M J, Brůža P, Jarvis L A et al. Multi-beam scan analysis with a clinical LINAC for high resolution Cherenkov-excited molecular luminescence imaging in tissue[J]. Biomedical Optics Express, 9, 4217-4234(2018).

    [4] Jia M J, Brůža P, Andreozzi J M et al. Cherenkov-excited luminescence scanned imaging using scanned beam differencing and iterative deconvolution in dynamic plan radiation delivery in a human breast phantom geometry[J]. Medical Physics, 46, 3067-3077(2019).

    [5] Jia M J, Cao X, Gunn J R et al. Tomographic Cherenkov-excited luminescence scanned imaging with multiple pinhole beams recovered via back-projection reconstruction[J]. Optics Letters, 44, 1552-1555(2019).

    [6] Cao X, Jiang S D, Gunn J R et al. Single pixel hyperspectral Cherenkov-excited fluorescence imaging with LINAC X-ray sheet scanning and spectral unmixing[J]. Optics Letters, 45, 6130-6133(2020).

    [7] Feng J C, Brůža P, Dehghani H et al. Cherenkov-excited luminescence sheet imaging (CELSI) tomographic reconstruction[J]. Proceedings of SPIE, 10049, 1004912(2017).

    [8] Daubechies I, Defrise M, de Mol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Communications on Pure and Applied Mathematics, 57, 1413-1457(2004).

    [9] Boyd S, Parikh N, Chu E et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine Learning, 3, 1-122(2011).

    [10] Zhang W Q, Feng J C, Li Z et al. Reconstruction for Cherenkov-excited luminescence scanned tomography based on Unet network[J]. Chinese Journal of Lasers, 48, 1707001(2021).

    [11] Jin K H, McCann M T, Froustey E et al. Deep convolutional neural network for inverse problems in imaging[J]. IEEE Transactions on Image Processing, 26, 4509-4522(2017).

    [12] Zhang J, Ghanem B. ISTA-Net: interpretable optimization-inspired deep network for image compressive sensing[C], 1828-1837(2018).

    [13] Chen Y Y, Wang X, Yang D et al. An image reconstruction algorithm based on LP-norm for magnetic induction tomography[J]. Journal of Biomedical Engineering, 30, 162-165(2013).

    [14] Yang Y, Sun J, Li H B et al. ADMM-CSNet: a deep learning approach for image compressive sensing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 521-538(2020).

    [15] Lü Y J, Tian J, Cong W X et al. A multilevel adaptive finite element algorithm for bioluminescence tomography[J]. Optics Express, 14, 8211-8223(2006).

    [16] Dehghani H, Eames M E, Yalavarthy P K et al. Near infrared optical tomography using NIRFAST: algorithm for numerical model and image reconstruction[J]. Communications in Numerical Methods in Engineering, 25, 711-732(2008).

    [17] Ramirez J M, Martínez-Torre J I, Arguello H. LADMM-Net: an unrolled deep network for spectral image fusion from compressive data[J]. Signal Processing, 189, 108239(2021).

    [18] Esser E, Zhang X Q, Chan T F. A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science[J]. SIAM Journal on Imaging Sciences, 3, 1015-1046(2010).

    [19] Zhang S L, Li W B, Tang G F. Study on filtered back projection algorithm of image reconstruction[J]. Journal of Xianyang Normal University, 23, 47-49(2008).

    [20] Feng J C, Chang D, Li Z et al. Cherenkov-excited luminescence scanned tomography reconstruction based on approximate message passing[J]. Chinese Journal of Lasers, 47, 0207027(2020).

    [21] Liu P, Zhang Y, Gong J H. Root mean square error and neighbouring relation matching approach for multi-scale areal feature[J]. Acta Geodaetica et Cartographica Sinica, 43, 419-425(2014).

    [22] Huynh-Thu Q, Ghanbari M. Scope of validity of PSNR in image/video quality assessment[J]. Electronics Letters, 44, 800-801(2008).

    [23] Wang Z, Bovik A C, Sheikh H R et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 13, 600-612(2004).

    Tools

    Get Citation

    Copy Citation Text

    Mengfan Geng, Hu Zhang, Zhe Li, Ting Hu, Kebin Jia, Zhonghua Sun, Jinchao Feng. A Reconstruction Algorithm for Cherenkov‑Excited Luminescence Scanning Imaging Based on Unrolled Iterative Optimization[J]. Chinese Journal of Lasers, 2023, 50(15): 1507106

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Biomedical Optical Imaging

    Received: Mar. 22, 2023

    Accepted: Apr. 25, 2023

    Published Online: Aug. 8, 2023

    The Author Email: Li Zhe (lizhe1023@bjut.edu.cn), Feng Jinchao (fengjc@bjut.edu.cn)

    DOI:10.3788/CJL230640

    Topics