Acta Optica Sinica, Volume. 40, Issue 9, 0902001(2020)

System Development and Clock Transition Spectroscopy Detection of Transportable 87Sr Optical Clock

Feng Guo1,2, Dehuan Kong1,2, Qiang Zhang1,2, Yebing Wang1、**, and Hong Chang1,2、*
Author Affiliations
  • 1Key Laboratory of Time & Frequency Primary Standards, Chinese Academy of Sciences, Xi'an, Shaanxi 710600, China;
  • 2School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(27)

    [1] Ludlow A D, Boyd M M, Ye J et al. Optical atomic clocks[J]. Reviews of Modern Physics, 87, 637-701(2015).

    [2] Nicholson T L, Campbell S L, Hutson R B et al. Systematic evaluation of an atomic clock at 2×10 -18 total uncertainty[J]. Nature Communications, 6, 6896(2015).

    [3] Campbell S L, Hutson R B, Marti G E et al. A Fermi-degenerate three-dimensional optical lattice clock[J]. Science, 358, 90-94(2017).

    [4] Grebing C, Al-Masoudi A, Dörscher S et al. Realization of a timescale with an accurate optical lattice clock[J]. Optica, 3, 563-569(2016).

    [5] Ludlow A D, Ye J. Progress on the optical lattice clock[J]. Comptes Rendus Physique, 16, 499-505(2015).

    [6] Poli N, Schioppo M, Vogt S et al. A transportable strontium optical lattice clock[J]. Applied Physics B, 117, 1107-1116(2014).

    [7] Ohmae N, Sakama S, Katori H. High-stability optical frequency transfer with all-fiber architecture for optical lattice clocks[J]. Electronics and Communications in Japan, 102, 43-48(2019).

    [8] Altschul B, Bailey Q G, Blanchet L et al. Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission[J]. Advances in Space Research, 55, 501-524(2015).

    [9] Grotti J, Koller S, Vogt S et al. Geodesy and metrology with a transportable optical clock[J]. Nature Physics, 14, 437-441(2018).

    [10] Kolkowitz S, Pikovski I, Langellier N et al. Gravitational wave detection with optical lattice atomic clocks[J]. Physical Review D, 94, 124043(2016).

    [12] Bercy A, Lopez O, Pottie P E et al. Ultrastable optical frequency dissemination on a multi-access fibre network[J]. Applied Physics B, 122, 189(2016).

    [13] Koller S B, Grotti J, Vogt S et al. Transportable optical lattice clock with 7×10 -17 uncertainty[J]. Physical Review Letter, 118, 073601(2017).

    [14] Zhang S N, Zhang X G, Cui J Z et al. Compact Rb optical frequency standard with 10 -15 stability[J]. Review of Scientific Instruments, 88, 103106(2017).

    [15] Chang P Y, Zhang S N, Shang H S et al. Stabilizing diode laser to 1 Hz-level Allan deviation with atomic spectroscopy for Rb four-level active optical frequency standard[J]. Applied Physics B, 125, 196(2019).

    [16] Shang H S, Zhang X G, Zhang S N et al. Miniaturized calcium beam optical frequency standard using fully-sealed vacuum tube with 10 -15 instability[J]. Optics Express, 25, 30459-30467(2017).

    [17] Shang J J, Cao J, Cui K F et al. A compact, sub-Hertz linewidth 729 nm laser for a miniaturized 40Ca+ optical clock[J]. Optics Communications, 382, 410-414(2017).

    [18] Cao J, Zhang P, Shang J et al. A compact, transportable single-ion optical clock with 7.8×10 -17 systematic uncertainty[J]. Applied Physics B, 123, 112(2017).

    [21] Ido T, Katori H. Recoil-free spectroscopy of neutral Sr atoms in the lamb-dicke regime[J]. Physical Review Letters, 91, 053001(2003).

    [22] Brown R, Phillips N, Beloy K et al. Hyperpolarizability and operational magic wavelength in an optical lattice clock[J]. Physical Review Letters, 119, 253001(2017).

    [23] Guo Y, Yin M J, Xu Q F et al. Interrogation of spin polarized clock transition in strontium optical lattice clock[J]. Acta Physica Sinica, 67, 070601(2018).

    [24] McDonald M, McGuyer B, Iwata G et al. Thermometry via light shifts in optical lattices[J]. Physical Review Letters, 114, 023001(2015).

    [25] Blatt S, Thomsen J W, Campbell G K et al. Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock[J]. Physical Review A, 80, 052703(2009).

    [26] Boyd M M. High precision spectroscopy of strontium in an optical lattice: towards a new standard for frequency and time[D]. Colorado: University of Colorado, 99(2007).

    [27] Wang Y B, Yin M J, Ren J et al. Strontium optical lattice clock at the national time service center[J]. Chinese Physics B, 27, 023701(2018).

    Tools

    Get Citation

    Copy Citation Text

    Feng Guo, Dehuan Kong, Qiang Zhang, Yebing Wang, Hong Chang. System Development and Clock Transition Spectroscopy Detection of Transportable 87Sr Optical Clock[J]. Acta Optica Sinica, 2020, 40(9): 0902001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atomic and Molecular Physics

    Received: Dec. 9, 2019

    Accepted: Jan. 19, 2020

    Published Online: May. 6, 2020

    The Author Email: Yebing Wang (wangyebing@ntsc.ac.cn), Hong Chang (changhong@ntsc.ac.cn)

    DOI:10.3788/AOS202040.0902001

    Topics